

AIM APPLE KIM PET AIM ATARI OSI SYM ATARI PET APPLE OSI AIM KIM AIM KIM APPLE PEI ATARI SYM OSI ATARI A PET APPLE AIM APPLE ATARI KIM APPLE ATARI KIM OSI PET SYM APPLE KIM PET AIM ATARI OSI SYM ATARI PET APP LEOSI KIM AIM SYM OSI PET ATARI SYM OSI ATARI AIM PET KIM APPLE AIM AIM SYM PET OSI KIM ATARI APPLE ATARI K

 SYM ATARI PET APPLE OSI AIM KIM AIM KIM APPLE PET ATARI SYM OSI ATARI AIM PET KIM APPLE AIM APPLE ATARIC AIM APPLE KIM PET. AIM ATARI OSI SYM ATARI PET APPLE OSI AIM KIM AIM KIM APPLE PET ATARI SYM OSI ATARI A PET APPLE AIM APPLE ATARI KIM APPLE ATARI KIM OSI PET SYM APPLE KIM PET AIM ATARI OSI SYM ATAAI PET APP

Subscription: One Year $=12$ issues. Circle correct category and write amount in space provided.

Surface:

United States	\$15.00	
All Other Countries	\$18.00	
Air Mail:		
Central America	\$27.00	
Europe/So. America	\$33.00	
All Other Countries	\$39.00	\$
"BEST of MICRO Volume 1"		
Surface	\$7.00	
Air Mail	\$10.00	\$
"BEST of MICRO Volume 2 "		
Surface	\$9.00	
Air Mail	\$13.00	\$
"ALL of MICRO Volume 2 "		
Surface	\$9.00	
Air Mail	\$13.00	\$

Back Issues:

PO Box 6502 Chelmsford, Mass 01824

"The BEST of MICRO Volume 1 " contains all of the important material from the first six issues of MICRO in book form.
"The BEST of MICRO Volume 2" contains all of the important material from the second six issues [\#7 to 12] of MICRO in book form.
"ALL of MICRO Volume 2" is all six issues of Volume 2, issues 7 to 12, at a special reduced price for a limited time while supplies last.

```
Issues 7 to 12:
```

Issues 13 on:

All payments must be in US dollars.
Make checks payable to: MICRO
Foreign payments in International Money Order or cash.

Surface @ $\$ 1.75$ each Air Mail @ $\$ 2.75$ each Surface @ $\$ 2.25$ each Air Mail @ $\$ 3.25$ each

TOTAL

$$
\begin{aligned}
& =\$ \ldots \ldots \ldots \ldots \\
& =\$ \ldots \ldots \ldots \ldots \\
& \$ \ldots \ldots \ldots \ldots
\end{aligned}
$$

If you are a subscriber, attach label or write subscription number here:
Name:
Address:

City:
State:
Zip:
Country (if not U.S.):
Help MICRO bring you the info you want by completing this short questionnaire.
Microcomputers Owned/Planning to Buy: AIM SYM KIM PET APPLE OSI Other:
Peripherals Owned/Planning to Buy: Memory Disk Video Printer Terminal Other:
Microcomputer Usage: Educational Business Personal Control Games Other:
Languages Used: Assembler BASIC FORTH PASCAL Other:
Your comments and suggestions on MICRO:

Club/Group User Registration Form
Name:
President:
Location:
No. of Members:
Meeting algorithm (date, time, place):.
\qquad
\qquad
Publications:

Aim/Purpose of the group:

For Current Information, Contact:.

Software/Hardware Catalogue Entry

Do you have a software or hardware package you want publicized? Our Software and Hardware Catalogues offer a good opportunity to receive some free advertisement. These regular features of MICRO are provided both as a service to our readers and as a service to the 6502 industry which is working hard to develop new and better software and hardware products for the 6502 based system. There is no charge for listings in these catalogues. All that is required is that material for the listing be submitted in the listing format. All information should be included. We reserve the right to edit and/or reject any submission. We might not edit the description the same way you would, so please, be brief and specific.

Name

System:
Memory:
Language:
Hardware:
Description:
\qquad
\qquad
\qquad
\qquad

Copies:
Price:
Author:
Available from:
\qquad
\qquad

Classified Ad

Classified ads provide an economical way to announce new products or sales promotions, generate product interest, enhance visibility and promote good will. MICRO clusters large format classified ads at high impact locations throughout each issue. Because classifieds represent a service to readers, MICRO must restrict each advertiser to a single, six-line insertion per issue. The nominal $\$ 10$ charge reflects our preparation costs and must be prepaid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name:

Address:
\qquad

Other

If you are interested in Writing for MICRO, becoming a MICRO dealer or advertising in MICRO, please indicate below and the information will be mailed to you.

Dealer Information Package:
Advertiser's Media Package:
MICRO Writer's Guide:

First
Class
Stamp

P.O. Box 6502

Chelmsford, MA 01824

"As manager of Personal Computers, here at Computerland of San Francisco, evaluating new software products is part of my job. With all the word processors on the market today, I choose EasyWriter for my business and personal use."
-Karen Dexter Weiss

EasyWriter

80 COLUMNS OF WORD PROCESSING POWER

FOR YOUR APPLE II COMPUTER

Finally . . . INFORMATION UNLIMITED SOFTWARE is able to bring you a complete word processing system for the Apple II. The new EasyWriter system gives you 80 columns of upper and lower case characters for your Apple's video display, using the new SUP'R'TERM 1 board!

A long time ago, we decided to bring you the best simple-touse and understand tools for your computer system. Today we've taken another stride in that same direction. It took some doing, in both hardware and software, but we think you'll agree that for the buck, no one can touch us.

Check it out:

- 80 Columns on the Screen!
- Upper \& Lower Case!
- Global Search \& Replace!
- Underlining!
- Bidirectional Printing!
- Incremental Spacing!
- File Appending!
- 50 Pages of Text Per Disk!

You can purchase the new EasyWriter 80 column word processing system as a complete hardware and software package directly from our new. office in California, or from your local computer dealer.

Information Unlimited Sofwarem

Information Unlimited Software, Inc. 793 Vincente St.
Berkeley, CA 94707 (415) 525-4046

- EasyWriter is a TM of Cap n Software. Inc
- Apple II is a TM of Apple Computers. Inc.

NJGRO

Table of Contents

Expanding the SYM-1 by Robert A. Peck
A HIRES Graph-Plotting Subroutine by Richard Fam
Editorial 11
Multiplexing PET's User Port 13
by Ed Morris, Jr.
The Binary Sort 15
by Robert Phillips
A Complete Morse Code Send/Receive Package 19
by Marvin L. DeJong
MICRO Club Forum 29
The Great Superboard Speed-Up 31
by J.R. Swindell
KIM-1 Tape Recorder Controller 35
by Michael Urban
Ask The Doctor 41
by Robert M. Tripp
Graphics and the Challenger C1P, Part 3 47
by William L. Taylor
The MICRO Software Catalogue: XVII 55
by Mike Rowe
6502 Bibliography: Part XVII 59

Staff

Editor/Publisher
Robert M. Tripp
Associate Editor Mary Ann Curtis Assistant Editor Evelyn M. Heinrich Business Manager Maggie E. Fisher
Circulation Manager
Carol A. Stark Comptroller
Donna M. Tripp

Production Assistant

L. Catherine Bland

MICRO Lab

R. Keith Beal

MICRO ${ }^{T M}$ is published monthly by MICRO INK, Inc., Chelmsford, MA 01824. Tel. 617/256-5515.
Second Class postage paid at Chelmsford, Ma 01824.
Publication Number: COTR 395770.
Circulation: Paid subscriptions: U.S.: 3700, Foreign: 350; Dealers: U.S.: 3500, Foreign: 1700.

Subscription rates: U.S.: \$15 per year. Foreign, surface mail: \$18 per year.
For air mail rate, change of address, back issue or subscription information write to: MICRO, P.O. Box 6502, Chelmsford, MA 01824.

Entire contents Copyright © 1980 by MICRO INK, Inc.

Advertiser's Index

Andromeda Computer Systems 46
Apple Shoppe 57
Beta Computer Devices 30
Classified Ads 26,49
COMPAS 18
The Computerist, Inc. 44
Connecticut microComputers 58
Creative Computing 63
Dr.Dobb's Journal 54
Galaxy 57
H. Geller Computer Systems 14
Information Unlimited Software 1
Micro-Music, Inc. 58
Micro Technology Unlimited IFC, 27
Mighty Byte Computers 46
Muse Software 33
NIBBLE 34
Perry Peripherals 32
Powersoft, Inc. 40
Programma International BC
Progressive Software 8
Rainbow Computing, Inc. IBC
Raygam, Inc. 64
RNB-Enterprises 4
Shepardson Microsystems, Inc. 17
Skyles Electric Works 12,28
Softside Publications 45
Softside Software 2
Southwestern Data Systems 32
Stoneware 57
Sublogic 10
Synergistic Software 43
United Software of America 46

SYM-1, 6502-BASED MICROCOMPUTER

- FULLY-ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's ready-to-use
- ALL LSI IC'S ARE IN SOCKETS
- 28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 "SPECIAL" FUNCTIONS
- EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY
- KIM-1* HARDWARE COMPATIBILITY The powerful 6502 8-Bit MICROPROCESSOR whose advanced architectural features have made it one of the largest selling "micros" on the market today.
- THREE ON-BOARD PROGRAMMABLE INTERVAL TIMERS available to the user, expandable to five on-board.
- 4 K BYTE. ROM RESIDENT MONITOR and Operating Programs.
- Single 5 Volt power supply is all that is required.
- 1 K BYTES OF 2114 STATIC RAM onboard with sockets provided for immediate expansion to 4 K bytes onboard, with total memory expansion to 65,536 bytes.
- USER PROM/ROM: The system is equipped with 3 PROM/ROM expansion sockets for 2316/2332 ROMs or 2716 EPROMs
- ENHANCED SOFTWARE with simplified user interface
- STANDARD INTERFACES INCIUDE:
- Audio Cassette Recorder Interface with Remote Control (Two modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud)
-Full duplex 20 mA Teletype Interface
-System Expansion Bus Interface
-TV Controller Board Interface
-CRT Compatible Interface (RS-232)
- APPLICATION PORT: 15 Bi-directional TTL Lines for user applications with expansion capability for added lines
- EXPANSION PORT FOR ADD-ON MODULES (51 I/O Lines included in the basic system)
- SEPARATE POWER SUPPLY connector for easy disconnect of the d-c power
- AUDIBLE RESPONSE KEYPAD

Synertek has enhanced KIM-1* software as well as the hardware. The software has simplified the user interface. The basic SYM-1 system is programmed in machine language. Monitor status is easily accessible, and the monitor gives the keypad user the same full functional capability of the TTY user. The SYM-1 has everything the KIM-1* has to offer, plus so much more that we cannot begin to tell you here. So, if you want to know more, the SYM-1 User Manual is available, separately.

SYM-1 Complete w/manuals
\$269.00
SYM-1 User Manual Only
SYM-1 Expansion Kit
7.00

Expansion includes 3 K of 2114 RAM chips and $1-6522$ 1/O chip SYM-1 Manuals: The well organized documentation package is complete and easy-to-understand.
SYM-1 CAN GROW AS YOU GROW. Its the system to BUILD-ON. Expansion features that are soon to be offered:

```
*BAS-1 8K Basic ROM (Microsoft)
\(\$ 159.00\)
*KTM-2 TV Interface Board
349.00
```

*We do honor Synertek discount coupons

QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 \& AIM 65

These boards are set up for use with a regulated power supply such as the one below, but, provisions have been made so that you can add onboard regulators for use with an unregulated power supply. But, because of unreliability, we do not recommend the use of onboard regulators. All I.C.'s are socketed for ease of maintenance. All boards carry full 90 -day warranty.
All products that we manufacture are designed to meet or exceed industrial standards. All components are first qualtiy and meet full manufacturer's specifications. All this and an extended burn-in is done to reduce the normal percentage of field failures by up to 75%. To you, this means the chance of inconvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of less than forty-eight hours for repair.
Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after receipt, complete, in original condition, and in original shipping carton; we will give you a complete credit or refund less a $\$ 10.00$ restocking charge per board.

VAK-1 8-SLOT MOTHERBOARD

This motherboard uses the KIM-4* bus structure. It provides eight (8) expansion board sockets with rigid card cage. Separate jacks for audio cassette, TTY and power supply are provided. Fully buffered bus.

VAK-1 Motherboard
$\$ 129.00$
VAK-2/4 16K STATIC RAM BOARD
This board using 2114 RAMs is configured in two (2) separately addressable 8 K blocks with individual write-protect switches.
VAK-2 16K RAM Board with only
8K of RAM ($1 / 2$ populated) $\quad \$ 239.00$

VAK-5 2708 EPROM PROGRAMMER
This board requires a +5 VDC and $\pm 12 \mathrm{VDC}$, but has a $D C$ to $D C$
multiplyer so there is no need for an additional power supply. All software is resident in on-board ROM, and has a zero-insertion socket. VAK-5 2708 EPROM Programmer
$\$ 269.00$
VAK-6 EPROM BOARD
This board will hold 8 K of 2708 or 2758 , or 16 K of 2716 or 2516 EPROMs. EPROMs not included.

VAK-6 EPROM Board
\$129.00
VAK-7 COMPLETE FLOPPY-DISK SYSTEM (May '79)

VAK-8 PROTYPING BOARD

This board allows you to create your own interfaces to plug into the motherboard. Etched circuitry is provided for regulators, address and data bus drivers; with a large area for either wire-wrapped or soldered IC circuitry.

VAK-8 Protyping Board
$\$ 49.00$

POWER SUPPLIES
ALL POWER SUPPLIES are totally enclosed with grounded enclosures for safety, AC power cord, and carry a full 2-year warranty. FULL SYSTEM POWER SUPPLY

This power supply will handle a microcomputer and up to 65 K of our VAK-4 RAM. ADDITIONAL FEATURES ARE: Over voltage Protection on 5 volts, fused, AC on/off switch. Equivalent to units selling for $\$ 225.00$ or more.
Provides + 5 VDC@ 10 Amps $\& \pm 12$ VDC @ 1 Amp
VAK-EPS Power Supply

KIM-1* Custom P.S. provides 5 VDC@ 1.2 Amps and + 12 VDC@.1 Amps KCP-1 Power Supply
$\$ 41.50$
SYM-1 Custom P.S. provides 5 VDC @ 1.4 Amps VCP-1 Power Supply
$\$ 41.50$ *KIM is a product of MOS Technology

Expanding the SYM-1... Adding an ASCII Keyboard

Adding an ASCII keyboard to a SYM is fairly simple, if you know what you are doing. There are a few tricks required and some understanding of the SYM Monitor is needed. And, it is all presented here.

The Synertek monitor program has a feature which allows it to communicate directly with a teletype system. This is, when you are in the reset mode, the monitor will scan both the onboard keypad and the teletype input port to look for the first keystroke. After finding the first stroke, either the keypad or the teletype is used as the exclusive input to the monitor program.

Because of the teletype interface, it would, at first thought, be an excellent way to expand the basic SYM system. However, when one considers the bulk, cost and availability of a teletype, other alternatives for early stage expansion may come to mind.

Synertek also offers a keyboard/video display unit for the SYM-1, known as the KTM-2. It is a very versatile unit; but the present list price of $\$ 349$ could cause some of us to wait a bit to budget for its eventual purchase. What then to do in the meantime?

To at least begin a system expansion at a low cost, one might consider adding a full ASCII keyboard now and a full video display as a separate step at a later date. ASCII keyboards are available on the surplus scene for as little at $\$ 35$, so this seems like a good place to start.

An initial thought in adding the ASCII keyboard to the SYM would be to duplicate the functions of the teletype. This would pose a couple of unwelcome complications, specifically the choice of an appropriate baud rate and the addition of a parallel to serial conversion to the ASCII keyboard output.

However, if we attach the keyboard to the teletype input and log onto the keyboard, the SYM monitor will respond to us in bit serial mode as well. We would then, at least for a period of time, lose our display capabilities. We would have to restore the onboard display vector in order to see the results of our keystrokes.

Since a certain amount of software had to be written anyway to bypass the above problem, it seemed appropriate to solve some hardware problems with software instead. I added VIA No. 2 (6522) to the system to provide an extra set of input ports, one of which I dedicated to the parallel ASCII keyboard. Port B is used for the 6522 timer functions so to preserve these for future use.; Port A was chosen for the keyboard.

In the attempt to add the keyboard to the system, a number of items were kept in mind:
(A) All of the monitor functions had to be normally accessible (different key groups perhaps, but all functions still needed).
(B) The use of the keyboard in place of the keypad should not interfere with the execution of any programs I had already written or adapted for use tith the SYM if at all possible.
(C) The interface routines should be written in a fully relocatable style so that they could be incorporated into a monitor PROM routine if desired.

In keeping with these principles, the program shown in Figure 1 was written to perform the monitor interfacing.

When one desires to use the external ASCII keyboard instead of the keypad, the routine labeled INIT would be executed. A direct jump to this routine is used. It modifies both the keyboard input vector and the keyboard status vector, providing for entry to the other routines. Then it does a warm start jump back to the main segment of the monitor program.

Following the execution of the INIT routine, the monitor program will always check the external keyboard for its inputs. Only the reset key on the keypad is
still active at this point. To restore full control to the onboard keypad, one needs only to push reset or execute a jump to location 8B4A which is the beginning of the power-on reset routine (simulates pushing the reset switch).

Now that we've used INIT, let's see what functions we have and how to access them. To begin with, there are two routines in Figure 1 referred to by the INIT program:

GKEY, the equivalent of SYM GETKEY, and
KSTAT, the equivalent of SYM KYSTAT.
Both routines affect the same registers (A,F) and have the same overall effect as noted in the SYM manual, page 9-3.

The KSTAT routine reads the input port addressed as A801, then left-shifts the input byte. If there is an input there, the carry bit will be set. Therefore KSTAT, as a subroutine, performs exactly the same function of KYSTAT.

The ASCII keyboard is connected with its 7 output bits on port A bits 2PA6-

2PAO. Port 2PA7 is used for a key strobe input (any key down). The keyboard parity bit, if any, is not used in this application. If no key is down, the input port will be read as all zeros. If any key is down, the most significant bit of the input port will be a one due to the presence of the keystrobe bit, allowing a single left shift to set the carry bit.

The GKEY routine performs the same function as GETKEY in that it scans the display while waiting for a key to be pressed. In the process of waiting for a keystroke, the scanning of the display is controlled through the display scanning vector. This allows the user to make use of the oscilloscope output routine with only minor modifications, substituting a JSR to GKEY for the JSR to GETKEY.

All other specifications mentioned in the Synertek manual for the oscilloscope driver routine will then be valid. As a matter of fact, access to an oscilloscope and the use of the driver routine could temporarily satisfy a person's desire for a video display, at least until some suitable alternative could be found.

The ASCII keyboard scanning routine GKEY handles the keybounce problem by going into a small wait loop immediately after sensing that a key is down, then scans the display while it waits for the key to be released. After release, it interprets the original keystroke contents by stripping off the keystrobe bit and returning to the calling program with the ASCII equivalent of the key in the accumulator.

Now that we've seen how the routines provide for the communication with the new keyboard, lets see how we can access all of the SYM monitor functions without resorting to the use of the keypad.

Because of the direct relation of the ASCII equivalents, the following control functions are directly accessible:

Memory: M	Jump: J
Verify: V	Execute: E
Block move: B	Go: G
Write protect:W	Calculate: C
Register: R	Fill: F
Deposit: D	

20	88	81	GKEY	JSR	SAVER	SAVE REGISTERS
AD	01	A 8		LDA	AROI	GET PARALLEL ASCII
FO	24			BEQ	DISP	LNLESS NONE, THEN ERANCH
85	F1			STA	OOF 1	STGRE IT A whille
A 9	1 C			L) A	\# $\$ 10$	LESOUNCE CUNSTANT
85	EF			STA	JOEF	CEBOUNCE
C6	FO		WAITI	DEC	SOFO	SMALL LOJP
D 0	FC			BNE	WAIT1	
C6	EF			DEC	OOEF	LARGE LOOP
D 0	F			BNE	WAIT1	
20	03	85	SCANA	JSR	IJSCNV	SCAN DISPLAY (USE SCANVEC)
2 C	01	A 8		8 IT	A801	IS KEY STILL DUGN?
30	$F \varepsilon$			BM I	SCANA	WAIT FOR KEY REL EASE
A 5	F 1			L. ${ }^{\text {A }}$	OOFI 1	KEY UP, PROCESS KEY
29	7F			AND	\# 57 F	STRIP KEY STRCEE BIT
A5	F 1			JSR	OUTCHR	SEND INTU DISEUF
A5	F 1			LDA	00 F 1	GET IT AGAIN
29	7F			AND	\$ \ddagger. 7 F	STRIP IT AGAIN
4 C	B8	81		JMP	RES XAF	FETURN WITH ASCII Ify A
A 9	10		WAIT2	L. A	4*10	IF NO KEY,
85	EF			ST A	OOEF	SCAN DIS SPLAY
20	03	89	SCANB	JSR	IJSCNV	THRU SCANVEC
C6	EF			DEC	OOFF	A NUMAER OF TIMES
DO	F9			BNE	SCANE	THEN GO BACK
Fo	CA			$B E Q$	GKEY	AND LOOK AGAIN
$A D$	01	A 8	KSTAT	LD A	A30 1	FEAO ASCII INPORT
0 O				ASLA		SHIFT ASB INTC CPRRY
60				RTS		PET, CFLAG=1 IF KEY DN.
20	86	8B	INIT	JSR	ACCESS	LNPROTECT SYSRAM
A 9	00			LDA	* 00	MODIFY
8 D	61	A 6		STA	A66 1	KEYBOARO
A9	02			LDA	*) 2	INPUT
80	62	A 6		STA	A662	VECTOR
A9	40			LDA	$4 \$ 40$	NODIFY
80	67	A6		STA	Af: 57	KEYPRESS
A 9	02			LDA	\#) ?	STATUS
8 D	68	A 6		ST A	A5 68	VECTOR
4 C	C3	80		JMP	WARM	WARM ENTRY, YONITCR

Figure 1: ASCII Keyboard Interface initialization and communication routines.

Likewise, again because of the direct ASCII usage by the monitor, the carriage return (CR), plus sign, minus sign, forward arrow and reverse arrow functions of the ASCII keyboard will perform the same functions as those equivalent keys on the built-in keypad.

Accessing the remainder of the monitor functions will require the use of two keys simultaneously, in the fashion of a shifted character. One of the keys is the CONTROL key often found on an ASCII keyboard. The function of this key (if your keyboard doesn't have one) is to inhibit the output of the two most significant bits of the ASCII output, in this case,to force a zero to both input lines 2PA6 and 2PA5. This can be accomplished with a single switch and one type 7408 IC as suggested in Figure 2.

The following functions are accessed by first holding down the control key, then pressing the indicated ASCII key: (control key referenced by CNTL below)

Store Double Byte: CNTL P
Load Paper Tape: CNTL Q
LD1 (KIM format): CNTLR LD2 (SYM hi spd): CNTL S
USRO: CNTL T
USR1: CNTL U
USR2: CNTL V
USR3: CNTL W
USR4: CNTL X
USR5: CNTL Y
USR6: CNTL Z
USR7: CNTL (
SAVP save paper tape: CNTL
SAV1 (KIM format): CNTL)
SAV2 (SYM hi spd): CNTL
As may be seen above, although certain of the keys may be different, all of the monitor functions are accessible from the external keyboard, fulfilling our objectives in adding it in the first place. Actually I have hedged a bit for a couple of items, but these items I figure are not needed on the external keyboard, but serve their purpose better on the keypad, specifically the DEBUG ON/OFF, the SHIFT, and the ASCII keypad items. DEBUG is a hardware function which can be simulated by software, so in a program we can access the function. SHIFT is a monitor translation routine, appropriate only to the placement and arrangement of the keys on the keypad. Finally, the ASCII key is not necessary externally since everything we output from the external keyboard is formatted in parallel ASCII anyway.

The SYM-1 is a very powerful singleboard computer. The addition of a parallel ASCII keyboard inexpensively provides us with a basis for further expansion of the SYM-1's capabilities.

Figure 2: Adding a CONTROL key

The SY6516 PSEUDO-16 microprocessor, after power up, is identical to the 6500 series microprocessors in terms of instruction set (source code only), registers and system timing. However, due to im-
provements made in the state counter and look ahead carry in the SY6516, several of the instructions in the 6500 series will require fewer cycles to execute. Instructions in this category are:

Mode			6516 \#Cycles
STA	(IND, Y)	6	5
	(ABS, X)	5	4
LDA	ABS, Y	4	3
INC	ABS, X	7	6
DEC	ABS, X	7	6
ASL	ABS, X	7	6
ROL	ABS, X	7	6
ROR	ABS, X	7	6
TAX	IMPLIED	2	1
TXA	IMPLIED	2	1
TAY	IMPLIED	2	1
TYA	IMPLIED	2	1
TSX	IMPLIED	2	1
TXS	IMPLIED	2	1
SEC	IMPLIED	2	1
CLC	IMPLIED	2	1
SED	IMPLIED	2	1
CLD	IMPLIED	2	1
SEI	IMPLIED	2	1
CLI	IMPLIED	2	1
CLV	IMPLIED	2	1
INX	IMPLIED	2	1
DEX	IMPLIED	2	1
DEY	IMPLIED	2	1
PLP	IMPLIED	4	3
PLA	IMPLIED	4	3
NOP	IMPLIED	2	1
RTI	IMPLIED	6	5
RTS	IMPLIED	6	4
TSX	FLAGS	N, Z	NO FLAGS
TSR	ABS	6	5
Table 1: SY6516 Pseudo-16 compatability to SY6500			
series microp	rocessors		

PROGRESSIVE SOFTWARE

Presents
Software and Hardware for your APPLE

SALES FORECAST provides the best forecast using the four most popular forecasting techniques: linear regression, log trend, power curve trend, and exponential smoothing. Neil D. Lipson's program uses artificial intelligence to determine the best fit and displays all results for manual intervention. $\$ 9.95$

CURVE FIT accepts any number of data points, distributed in any fassion, and fits a curve to the set of points using log curve fit, exponential curve fit, least squares, or a power curve fit. It will compute the best fit or employ a specific type of fit, and display a graph of the result. By Dave Garson. $\$ 9.95$

UTILITY PACK 1 combines four versatile programs by Vince Corsetti, for any memory configuration.

- Integer to Applesoft conversion: Encounter only those syntax errors unique to Applesoft after using this program to convert any Integer BASIC source.
- Disk Append: Merge any two Integer BASIC sources into a single program on disk.
- Integer BASIC copy: Replicate an Integer BASIC program from one disk to another, as often as required, with a single keystroke.
- Applesoft Update: Modify Applesoft on the disk to eliminate the heading always produced when it is first run.
- Binary Copy: Automatically determines the length and starting address of a program while copying its binary file from one disk to another in response to a single keystroke.
$\$ 9.95$
MISSILE-ANTI-MISSILE display a target, missile, anti-missile, a submarine and map of the U.S. on the screen. A hostile submarine appears and launches a pre-emptive nuclear attack controlled by paddle 1. As soon as the hostile missile is fired, the U.S. launches its anti-missile controlled by paddle 0 . Dave Moteles' program offers high resolution and many levels of play.
$\$ 9.95$

TOUCH TYPING TUTOR teaches typing. Indicates speed and errors made. Finger Bldrs, Gen. Typing, Basic Language and User Supplied. Diskette. Written by Wm. A. Massena. $\$ 19.95$

APPLE MENU COOKBOOK index-accessed data storage/retrieval program. Recipes stored, unlimited lines per entry. Easy editing. Formulated after N.Y. Times Cookbook. Other useful features included.
Written by Wm. Merlino, M.D.
$\$ 19.95$
MAILING LIST PROGRAM maintains complete record of name, address, phone no., mailing labels accommodates parallel card or built-in printer driver, easy data entry.
Diskette. 32K.
$\$ 19.95$

POSTAGE AND HANDLING

Please add $\$ 1.25$ for the first item and $\$.75$ for each additional item.

- Programs accepted for publication
- Highest royalty paid

BLOCKADE lets two players compete by building walls to obstruct each other. An exciting game written in Integer BASIC by Vince Corsetti. $\$ 9.95$

TABLE GENERATOR forms shape tables with ease from directional vectors and adds additional information such as starting address, length and position of each shape. Murray Summers' Applesoft program will save the shape table anywhere in usable memory.
$\$ 9.95$
OTHELLO may be played by one or two players and is similar to chess in strategy. Once a piece has been played, its color may be reversed many times, and there are also sudden reverses of luck. You can win with a single move. Vince Corsetti's program does all the work of keeping board details and flipping pieces.
$\$ 9.95$
SINGLE DRIVE COPY is a special utility program, written by Vince Corsetti in Integer BASIC, that will copy a diskette using only one drive. It is supplied on tape and should be loaded onto a diskette. It automatically adjusts for APPLE memory size and should be used with DOS 3.2.
$\$ 19.95$

SAUCER INVASION
 SPACE MAZE
 STARWARS

ROCKET PILOT Written by Bob Bishop
Each \$9.95

SAUCER INVASION lets you defend the empire by shooting down a flying saucer. You control your position with the paddle while firing your missile at the invader. Written by Bob Bishop.
$\$ 9.95$

HARDWARE

LIGHT PEN with seven supporting routines. The light meter takes intensity readings every fraction of a second from 0 to 588. The light graph generates a display of light intensity on the screen. The light pen connects points that have been drawn on the screen, in low or high resolution, and displays their coordinates. A special utility displays any number of points on the screen, for use in menu selection or games, and selects a point when the light pen touches it. The package includes a light pen calculator and light pen TIC TAC TOE. Neil D. Lipson's programs use artificial intelligence and are not confused by outside light. The hi-res light pen, only, requires 48 K and ROM card.
\$34.95

TO ORDER

Send check or money order to:

P.O. Box 273
Plymouth Meeting, PA 19462
PA residents add 6% sales tax.

U.S. and foreign dealer and distributor inquiries invited All programs require 16 K memory unless specified

A HIRES Graph-Plotting Subroutine in Integer BASIC for the APPLE II

Abstract

A BASIC subroutine is presented which permits HIRES graph plotting. It includes X and Y axes generation with scale markers as well as the plotting of user specified points. This will make it easy to display the results of a variety of problems, functions, correlations, etc.

The article entitled APPLE II High Resolution Graphics Memory Organization, foung in MICRO 7:43 by Andrew H. Eliason is of tremendous value to those who wish to plot in HIRES graphics. The following graph plotting subroutine utilizes formulae given in this article.

Referring to the listing on being called by the GOSUB 9000 statement in the main program, the subroutine first clears page 1 of HIRES graphics memory at line 9023. This is quite a timeconsuming process and the impatient experimenter may care to replace this line with a CALL statement to an equivalent machine language subroutine. I have actually tried this and found that it reduces the time execution for the complete plotting routine by approximately half.

Having set the graphics and HIRES modes in line 9060, the routine then proceeds to plot the X and Y axes. Scale markers are placed at 20-point intervals along the two axes.

The final stage in the subroutine in-
volves the plotting of the points. The magnitude of these points are stored in matrix GPH which is dimensioned for 279 elements in the main program. Only values $\operatorname{GPH}(\mathrm{X})$ between 0 and 91 inclusive can be plotted.

As you may recall, the display area of HIRES graphics is a matrix comprised of 280 horizontal by 192 vertical points. The subroutine fetches elements of GPH, does the necessary calculations, and outputs the results on the screen. To prevent the disfigurement of the two axes, I have avoided the plotting of points less than one byte away from the Y -axis and on the X -axis itself.

For successful application of this graph plotting subroutine, observe the following rules:
a) Only an APPLE II with a minimum of 16 K bytes of memory can be used
b) Ensure that the main program contains the statement DIM GPH(279).
c) Only values of $\operatorname{GPH}(\mathrm{X})$ such that $0 \mathrm{GPH}(\mathrm{X}) 191$ where X ranges from 0 to 279, inclusive, will be plotted.
d) Set HIMEM:8191 to restrain intrusion into page 1 of HIRES graphics memory.

Here are two short programs demonstrating the performance of the high resolution graphics-plotting subroutine.

DIM GPH(279)

FOR I = 0 TO 279
$\operatorname{GPH}(\mathrm{I})=\operatorname{RND}(191)$
NEXT I
GOSUB 9000
END

DIM GPH(279)
20 FOR I = 0 TO 279
$30 \quad \mathrm{GPH}(\mathrm{I})=\mathrm{I} / 2-30$
40 NEXT I
50 GOSUB 9000

Newforthe

APPLEII\&TRS-80*...

the

 sublocic 25 SirghtExperience the excitement of a new era in computer simulation as you make your landing approach after a practice flight in your FS1. Then return to the skies where enemy fighters are waiting to intercept you.
The FS1 is a visual flight simulator that gives you realistically stable aircraft control. And its beautifully accurate graphics are produced by a high-performance driver capable of drawing 150 lines per second.
Please DO NOT confuse the FS1 with other software claiming to offer flight simulation.
The FS1's sophistication, speed, and beauty are way beyond the ordinary.
See the FS1 package demonstrated at your dealer's, or order directly from subLOGIC. Either way, it's only $\$ 25$ plus 75 C for UPS or \$1.50 for first class mail. VISA and Mastercharge accepted.
*16K required. Specify your system: Apple II or TRS-80 Level I or Level II.

(217) 359-8482 Sul

The engineering and graphics experts opening a new era in computer simulation.

```
LIST
9000 REM
9001 REM * HIRES GRAPH-PLOTTING
9 0 0 2 ~ R E M ~ * ~ S U B R O U T I N E ~
9 0 0 3 ~ R E M ~ * * * * * )
9004 REM * BY R.S.K. FAM
9005 REM * 26/4/79
9006 REM *
9007 REM * DATA IS STORED IN GPH(X)
9008 REM * CONSISTIJG OF 200 POINTS
9009 REM * 0 <= GPH(X) <=191
9010 REM *
9011 REM * SET HIMEM:8191
9012 REM *
9020 REM *
9021 REM * CLEAR SCREEN
9022 REM *
9023 FOR I=8192 TO 16383: POKE I,
    0: NEXT I
9030 REM *
9040 REM * SET HIRES MODE
9050 REM *
9060 POKE -16304,0: POKE -16297,
    0: POKE -16302,0
9140 REM *
9150 REM * PLOT Y-AXIS
```



```
9170 FOR LV=0 TO 191:PT=1: IF (LV+
    9) MOD 20=0 THEN PT=7: POKE
    (LV MOD 8*1024+(LV/8) MOD 8
    *128*(LV/64)*40+8192),PT: NEXT
    LV
9200 REM *
9 2 1 0 ~ R E M ~ * ~ P L O T ~ X - A X I S ~
9 2 2 0 ~ R E M ~ * * * * * * )
9230 PT=0: FOR LH=0 TO 279: IF LH MOD
    20<>0 THEN 9240:PT=PT+1:^FOR
    MK=1 TO 2: POKE LH/7+16336-
    (1024*MK),64/(2 ((PT+5) MOD
    7)): NEXT MK: GOTO 9242
9240 POKE LH/7+16336,255
9242 NEXT LH
9260 REM *
9270 REM * PLOT POINTS
9280 REM *
9290 FOR LH=8 TO 279:LV=191-GPH(
    LH): IF LV<O OR LV>=191 THEN
    9330
9310 BV=LV MOD 8*1024+(LV/8) MOD
    8*128+(LV/64)*40+8192: POKE
    LH/7+BV,2 (LH MOD 7)
```

9330 NEXT LH: RETURN

MICRO - 80

Not to worry! The title of this editorial does not mean that MICRO is going to start covering TRS-80, 8080, or any other processor. MICRO is "The 6502 Journal" and has no plans to change that. The title simply refers to 1980 and/or the 1980's. Writing this at the start of a new decade, I want to reflect on what MICRO accomplished in the 70's and describe some of its plans for the 80 's.

MICRO in the 70's

MICRO was started in 1977 to fill two needs:

1. Provide a quality magazine devoted to the 6502 microprocessor and the various microcomputers based on the 6502. At that time, very little was being printed about the 6502 in the major journals.
2. Provide a means for 6502 oriented dealers and manufacturers to economically reach their specific 6502 audience.

The first issue was printed at a "store front" print shop, ran 28 pages, and had an immediate circulation of 450 copies. Since then MICRO has grown in many ways. It is now printed at a commercial printer, is 68 pages or more, has an immediate circulation of almost 10,000 copies, is completely typeset, and is published monthly.

MICRO decided from the start to pay its authors for their material. In fact, we pay twice! Authors received $\$ 25.00$ per page for material in the magazine, and then received an equal amount for material reprinted in "The BEST of MICRO".

MICRO in the 80's

In the 1980's, we will continue to provide serious articles on 6502 systems, to maintain the Software Catalog, and to continue the on-going 6502 Bibliography. With our monthly format and three week printing/mailing schedule, we will continue to print the most current advertisements.

A number of features will be added. These will include regular "news" columns about each of the major microcomputers; "topical" columns about the use of the 6502 in business, medicine, process control, education, etc.; the MICROScope in which qualified reviewers present detailed hardware/software product reviews; a "6502 Club Forum" highlighting club activities; and many other useful features.

To make writing for MICRO even more profitable, a new author payment schedule has been established. Authors will now receive up to $\$ 50.00$ per page for articles as well as residual payments for reprints. The minimum amount per page will be $\$ 25.00$, with the actual amount dependent on the type of material, quality of the article, etcetera.

I welcome any suggestions you have for improving MICRO, and hope that you will continue to participate in the exciting, expanding 6502 world, not just as a MICRO reader, but as an active contributor.

Writing for MICRO

Writing for MICRO is probably easier than you think, and more rewarding too! In this rapidly expanding world of 6502 microcomputers, no single person knows everything, and no single person knows nothing. Every computerist has something to contribute.

MICRO Pays Well

Even though MICRO is much smaller than Kilobaud, Byte, and the other major general microcomputing journals, it pays its authors as much or more than the others in general. Byte, for example, has a published scale of $\$ 25$ to $\$ 50$ per page. MICRO pays the same rates. Beyond that, MICRO pays its authors when articles are reprinted in "The BEST of MICRO". This means that a first rate article can earn its author up to $\$ 100$ per page. If you stop to consider that it normally takes at least three or four pages to present an idea, a discussion and a program, you will realize that it adds up.

MICRO Is Read By 6502 Computerists

Since MICRO is totally devoted to the 6502, its readership is composed only of computerists interested in the 6502. Since the general journals cover many different processors, a 6502 article will only appeal to a fraction of the readers, and may easily get lost between TRS-80 junk. An article you write for MICRO will get out to the right people.

MICRO Has Many Opportunities

There are many different ways you can write for MICRO. Each of the ways has its own merit and may apply to you at different times on different topics:

LETTERS and COMMENTS: If you have an observation, suggestion, hint, or other small item of interest
which you think others should know about, a 'Letter to the Editor' can be the perfect vehicle. MICRO does not pay for this type of contribution, but you will get full credit with a byline. Small notes about the AIM, SYM, or KIM may be included in "ASK the Doctor", again without payment but with a byline. It doesn't take long to jot down you information and send it in. And, in addition to getting your material in print, you may be really helping other 6502 computerists.

ARTICLES: When you have a larger idea, a complete article is appropriate. While it does take some time and effort on your part to put your information into a form that can be understood by others, it is probably not as difficult as you imagine. The MICRO Staff will work with you to get the article into its final form. You do get paid for any article which is published. While you may never get rich writing articles, you can easily earn enough for that extra memory or whatever.

COLUMNS: We are now actively seeking a few highly qualified individuals to write regular columns. We plan to have a column every other month or so on each of the major 6502 microcomputers, covering news of new products, events, and other items of interest. We also plan to feature regular columns on the use of the 6502 in various fields such as Medicine, Education, Business, Process Control, etcetera, and are looking for writers in these areas. If you are in a position to really know what is happening on one of the 6502 microcomputers or in one of the major application areas, contact us. MICRO will be paying the highest rates for these columns.

MICRO Opportunities

There are numerous opportunities for anyone who wishes to participate in MICRO. We have a Writer's Guide available which will show you in detail how to submit an article to MICRO. Please check the box on the tear-out form in this issue and send it in. MICRO will do the rest.

Skyles Electric Works

The BASIC Programmer's Toolkit

For PET Owners Who Want More Fun And Fewer Errors with Their Programming

Here are Ten Comands you'll need, all on a single chip you can install, in a minute without tools, on any PET or PET system. 2 KB of ROM firmware on a single chip with a collection of machine language programs available to you from the time you turn on your PET to the time you shut it off. No tape to load or to interfere with any running programs.

Can be placed in main board socket or with precision-engineered PCB connector to attach to data bus...depending on the model of your PET and additional memory systems.
Now available to interface
8N/8B, 16N/16B, 32N/32B PET...chip only \$50.00* 2001-8...chip and interface PCB 80.00* With Expandamen, PME 1
R. C. Factor or Skyles Electric Works systems 80.00*

With Computhink Disk System 85.00*
With Commodore's Word Processor II, for original 2001-8 PETs 90.00*
With Commodore's Word Processor II, for new PETs 72.50*
With Skyles Macro TeA 50.00*
*Shipping and handling, California sales tax where applicable must be added.
-California residents: please add 6% or 6.5% sales tax as required
VISA, MASTERCHARGE ORDERS CALL (800) 538-3083 (except California residents)
CALIFORNIA ORDERS PLEASE CALL (408) 257-9140
Skyles Electric Works

Multiplexing PET's User Port

> What do you do when you need to Input or Output more bits of data than your micro can handle? You multiplex! This is not very difficult with a little special hardware and very simple program. This implementation is on a PET, but can be used on any system.

Part of my duties as a chemist involve taking readings from an analytical instrument. The data consists of a series of six digit numbers. These are dutifully copied down on paper and later keypunched into a large computer. The calculations could easily be done in BASIC on a personal computer if there were some way to automatically get the data into the computer.

The data is presented on the front panel as six 7 -segment LED readouts. However, the rear panel supplies the data in BCD (Binary Coded Decimal) format. Each decimal digit is represented by four binary bits. Numbers above 9 (binary 1001) are not allowed. For six decimal digits a total of 24 bits is required. Unfortunately most small personal computers such as the PET have only an 8 -bit I/O port.

The solution is to multiplex, or combine the data into fewer input lines. For example, each decimal digit has a $1,2,4$, and 8 bit. These 24 bits of data could be wired through a 6 -position, 4 -pole switch to produce four outputs. The computer could then read one digit at a time, change the position of the switch and read again until all six digits are read. The decimal number must then be reconstructed by multiplying each digit by 1 , 10,100 , etc., and summing the results.

A mechanical 6-position switch is not really practical for computer operation, but the electronic analog exists in the 74LS151 integrated circuit. The 74LS151 is known as a $1-\mathrm{of}-8$ data selector and acts like an 8 -position single pole switch. This chip has eight inputs (pins $1,2,3,4,12,13,14,15$) and one output (pin 5). Three additional pins $(9,10,11)$ control which of the inputs is connected to the output.

If four 74LS151's are used, we have an 8 -position, 4 -pole switch. The 1 's bits from all the decimal digits are connected to one data selector. All of the 2's bits are connected to a second data selector, etc. The output from the four integrated circuits are connected to the four lowest bits (D0 D1 D2 D3) on the PET input port. The next three bits of the I/O are set to outputs (D4 D5 D6) and used to control the 1 -of-8 data selectors. Since I wasn't sure how much current the PET output could supply, I used a 74LS04 hex buffer between the PET outputs and the data selector control lines. The highest bit (D7) is used as a flag in my application to signal the computer that a number needs to be read.

Figure 1 gives a schematic drawing of the circuit. For clarity, the +5 volt connection (pin 16) and ground connection (pins 7 and 8) are not shown on the data selectors. I built this circuit on a $3^{\prime \prime}$ $\times 4^{\prime \prime}$ perf board which plugs directly in-
> E.D. Morris, Jr. 3200 Washington Midland, MI 48640
to the PET user port. If low power logic is used, the circuit requires 5 volts at 20 ma . This could be taken from the PET second cassette port. Since Commodore warns against this, I added a 5 volt regulator to my board and stole unregulated 9 volts from the computer. Before plugging this circuit into your computer, you should power it up with an external supply and verify that each input works when tested with a voltmeter.

The following program will allow the PET to read a 6 -digit decimal number through the user port.

```
10 POKE 59459,112
\(20 \mathrm{~A}=59471\)
\(30 \mathrm{FOR} I=0 \mathrm{TO} 5\)
\(40 \mathrm{P}=\mathrm{I} * 16\)
50 POKE A, P
\(60 \mathrm{~B}(\mathrm{I})=\operatorname{PEEK}(\mathrm{A}) \mathrm{AND} 15\)
70 NEXTI
\(80 \mathrm{C}=\mathrm{B}(0)+10 * \mathrm{~B}(1)+100 * \mathrm{~B}(2)\).
\(+1000 * \mathrm{~B}(3)+10000 * \mathrm{~B}(4)\)
\(+100000 * \mathrm{~B}(5)\)
90 PRINT C
```

Explanation of Program
Line 10 Sets up D4 D5 and D6 as outputs Line 20 User Port address
Line 50 Sends signal to data selectors Line 60 Reads lower four bits \& masks out others
Line 80 Reconstructs decimal number from digits
Line 30 If I goes from 0 to 7, then all 32 bits are read.

I am using only 24 bits, however, the circuit described here will read up to 32 bits through an 8 -bit I/O port. If you don't need D7 for a flag, you can use the 74LS150 1-of-16 data selector to read 64 bits. D7 would then be a fourth control line.

You probably don't have an analytical instrument around the house to keep track of, but look at all the other devices that are sporting digital readouts: clocks,
timers, scanners, thermometers, TV channel selectors, etc. The data for these is normally generated in BCD format and then converted to 7 -segment for display. A multiplexing technique can be used whenever you have more bits of data than input ports. The bits don't have to be a decimal number; each bit could represent of sensor of a burglar alarm system or the position of a turnout in a model train layout.

Figure 1:

T.D.Q.
 TAPE DATA QUERY
 THE IDEAL SOLUTION FOR PERSONAL AND VERY-SMALL BUSINESS DATA MANAGEMENT
 PET-8K
 TRS-80-LVL II
 * COMPLETE CASSETTE FILE MANAGEMENT SYSTEM
 - ENGLISH-LIKE COMMAND LANGUAGE
 - REPORT GENERATOR
 - UTILITY PACKAGE
 - NO PROGRAMMING KNOWLEDGE REQUIRED
 - REQUIRES 2 CASSETTE RECORDERS
 * T.D.Q. APPLICATION CASEBOOK

- COMPLETE DIRECTIONS TO MICRO-COMPUTERIZE:

Here is a concise description of the Binary Sort concept, and a detailed implementation in BASIC that should be easy to adapt to any micro or application.

Sometimes we have an array of data which we need to search in order to find the location of one particular element in it. This is more common with alphabetic data, but we may have to do it with either alpha or numeric data. The simplest way to find the item is to use a FOR-loop, checking each item individually until we find the one we are looking for. The average number of steps through the loop that must be made to find a given item is approximately half the length of the list. If the item is not on the list, then the program must execute as many steps through as there are items on the list. When the array is short, there is no problem. However, as the array gets longer, this method becomes more and more inefficient. An array that has 500 elements in it will require an average of 250 steps through the loop to find an item. Such a search will take several seconds.

When the list is ordered (i.e., sorted into either ascending or descending order), there is a much more efficient way to search the list: the binary search. Basically stated, in a binary search you continually divide the list into two halves and then eliminate the half which cannot contain your item. (Because the list is always divided into two halves, this is called a binary search.) For example, if the item at the half-way point is larger than the item you are looking for, you know that your item cannot be in the second half of the list. So, you eliminate it from consideration. You then divide the remaining list in half, and continue the process of eliminating and dividing until you find the item, or until you cannot cut in half any more. If that happens, the item you are looking for is not on the list, and your search has failed.

In a FOR-loop search, each step through the loop elimates only one item from the list; in a binary search, each step through eliminates half of the remaining list. Taking as an example a list of 255 items, Table 1 shows how much is eliminated at each iteration through the loop. The first column is the step number, the second column gives how many were eliminated in that step, and the third tells the total number of items now eliminated.

After step 8 through the search, you have either found your item (and you may well have found it before step 8), or your search has failed. At any rate, it took you only 8 times through the loop to find your item, as opposed to the average of 128

Robert Phillips
6 McKee Avenue
Oxford, OH 45056

Table 1.

Step	PT	IV	Find?	New IV	+ or \boldsymbol{l}	New PT
1	8	8	no	4	+	12
2	12	4	no	2	-	10
3	10	2	no	1	+	11
4	11	1	YES!			

Table 2.
(maximum: 255) that a straight search would require. The best part is that if you double the list, the binary search requires only one more step through the loop; double it again, and add just one more time through! Obviously, this is a wonderful tool.

There are only two requirements for a binary search: 1) the list must be in order; and 2) the items on the list must be unique (or, if not, it doesn't matter to you which of the duplicated items is located).

To do a binary search, we need two variables. One to point at where we are in the array, and one to keep cutting the search-field in half. In Table 2, I call them

Step No.	Eliminated this step	Total eliminated
1	128	
2	64	128
3	32	192
4	16	224
5	8	240
6	4	248
7	2	252
8	1	254

Table 2.

PT (for "pointer") and IV (for "interval"). IV will get cut in half each time through, until it gets down to 1 . IV will be added to PT if we have to go further down the list; it will be subtracted from PT if we have to come back up higher on the list. To illustrate this, let us assume an array of 15 elements. The item we are searching for happens to be in position 11. Let's step through and see what happens to PT and IV at each step.

The logic to do this is not difficult. Let's say that our array is called L1\$, and is an alpha array sorted into ascending (i.e., alphabetical) order. We have another variable TL ("total" - it is the same variable we would have used in a FORloop: FOR I 1 to TL) which tells us how many items are currently in the array. Finally, the item we are trying to find is stored in the variable SW\$. The simple algorithm appears in Figure 1.

If the array were sorted into descending order, the " " and " "symbols in statements 40 and 50 would be reversed. Notice that we use the INT function and round up. This is the equivalent to the CEILING function. Both things are necessary; if you don't round up, you won't be able to get to the end of the list, and non-integers will get clobbered during the division process.

As it happens, I do not like the redundancy of lines 40 and 50 ; I prefer to make them a little more efficient. I do it so that IV is always added to PT. Then, with one compare, I find out if IV should be positive (so that the addition will add IV to PT) or negative (so that the addition will, in effect, subtract IV from PT). So, I prefer to have lines 40 and 50 as follows:

40 IF L1\$ (PT) SW\$ THEN IV =-IV
$50 \mathrm{PT}=\mathrm{PT}+\mathrm{IV}$
While this is certainly more "elegant," it also adds a problem. IV will quite often turn out negative, and that will really foul up what happens in statement 30 . So, we have to change 30 to:

```
30 IV = INT((ABS(IV))/2+.5.
10 PT=INT(TL/2+.5): IV=PT
20 IF L1$(PT)=SW$ THEN GOTO [you have
    found it!]
30 IV =INT(IV/2+.5)
40 IF L1$(PT) SW$ THEN IV=IV-PT
50 IF L1$(PT) SW$ THEN IV=IV+PT
6 0 ~ G O ~ T O ~ 2 0 ~
```

Figure 1.

Now, having added the ABS function into line 30 to ensure that IV will always be positive, I am not sure that I have gained anything in efficiency. But, I think that it is more elegant, so l'll leave it!

If you try to run the program the way it is, you may have a problem: if the item that you are searching for is not on the list, you will get into an infinite loop and the only way out of the algorithm is to find the item. So, we have to check to see if IV has the value of 1 . If it does we cannot cut in half any more; we cannot search any more. We need to test IV's absolute value, and I put it right after the compare, calling it line 25 .

25 IF $\mathrm{ABS}(\mathrm{IV})=1$ THEN GOTO [the search has failed]

If everything in the world were perfect, that would be the algorithm. However, since consistently rounding IV up for the reasons pointed out above, we may actually, at some times, exceed the bounds of the array, raising the error condition. There are several different ways to handle the problem; I believe the easiest is to take the value of IV away from PT and continue on from there. Since I don't know at this point if IV is negative or positive, I simply change its sign and add it to PT in line 55.

$$
\begin{aligned}
& 55 \text { IF PT TLOR PT } 1 \\
& \text { THEN IV }=-\mathrm{IV}: \text { PT }=\text { PT }+\mathrm{IV}
\end{aligned}
$$

(If you really don't like to have IV go negative and then to have to use ABS, you can use the original version of lines 40 and 50, and then use two statements here in place of 55 .

$$
\begin{aligned}
& \text { IF PT } 1 \text { THEN PT = PT + IV } \\
& \text { and IF PT TL THEN PT = PT - IV) }
\end{aligned}
$$

My version of the binary sort algorithm is shown in Figure 2.

There is, unfortunately, still one more potential problem. If the number of items in the array (TL) is exactly a power of $2(16,32,64,128$,etc.), the search will not locate the very last item in the array. The reason is that when you cut in half, you don't cut perfectly in half. If the array has 16 elements in it, you look first at element 8: there are actually 7 elements above it in the array; but there are 8 elements below it! If the array has any number other than a power of 2 , there is always one division which has to be rounded up, and that rounding up gives us room to get to the very end of the array. (Actually, it also caused the problem of going beyond the bounds of the array, which made us add line 55.) There are several ways to overcome the problem, including preventing the array ever from having an "undesirable" number of items. For me, the simplest thing to do is to

```
10 PT=INT(TL/2+.5): IV=PT
20 IF L1$(PT)=SW$ THEN GOTO [found it! PT
    is the number of the item]
25 IF ABS (IV)=1 THEN GOTO [the search
    has apparently failed]
30 IV =(INT((ABS(IV))/2+. 5)
40 IF L1$(PT) SW$ THEN IV =-IV
5 0 ~ P T = P T + I V
55 IF PT TL OR PT 1 THEN IV =-IV: PT = PT+IV
6 0 ~ G O T O ~ 2 0 ~
```

Figure 2
check the last item in the array if the search fails. If they don't match, then the search actually has failed. But if it does succeed at this point, I do have to assign the value of TL to PT, as PT is what is carried into the main program to tell what item number was found. I do the entire thing in line 70 :

$$
\begin{aligned}
& 70 \text { IF SW\$ }=\text { L1 \$(TL) } \\
& \text { THEN PT }=\text { TL: GOTO [found it!] }
\end{aligned}
$$

I also have to change line 25 , so that the GOTO there branches to 70 .

If the compare in line 70 yields a false, then the search has really failed, and you drop out of the binary search algorithm. Let's now look at the complete algorithm in Figure 3, which is missing only the line numbers after the GOTO statements which will link the search to the programs you use it in.

[^0]Figure 3

Announcing...

OPTIMIZED SYSTEMS SOFTWARE UPGRADE YOUR APPLE $I{ }^{\circledR}$ WITH A NEW SYSTEMS SOFTWARE PACKAGE

- Unified Operating System
- Disk File Manager
- Commercial Basic
- Editor/Assembler/Debugger
- Data Base Manager

Optimized Systems Software does not use Apple DOS ${ }^{\circledR}$. OSS is a unified and complete systems software package with its own Operating System and File Manager. The Operating System, the File Manager and the Basic combined use only slightly more RAM than Apple DOS ${ }^{\circledR}$ alone. Requires 48 K Apple II ${ }^{\circledR}$ with Disk II.

Operating System

- Byte and Block I/O
- Simple User Interface
- Simple Device Interface (create your own)

Basic

- Nine Digit Precision DECIMAL Floating Point
- 32K Byte Strings
- Variable Names to 256 significant characters
- I/O Interface Statements
(no PRINT "control-D...")

File Manager

- Open, Read, Write, Delete, Lock, etc.
- Random Access via Note \& Point
- File Names of Primary. Ext type

Editor/Assembler/Debugger
 - Line Editor

(Edits Basic programs, too)

- Mini Assembler
- Maxi Assembler
- Disassembler
- Step, Trace, etc.

```
Available NOW at Special Introductory Prices
- Operating System + File Manager
- Operating System + File Manager + Basic
- Operating System + File Manager + ASM\(\$ 49.95\)
\[
\$ 49.95
\]
- Operating System + File Manager + Basic + ASM\(\$ 89.95\)
- Operating System + Data Base Manager (2nd Q)
```

Order today. Add $\$ 2.00$ for shipping \& handling. California residents add 6% sales tax. Visa/Mastercharge welcome. Personal checks require 2 weeks to clear.

Note: Apple $\|^{\circledR}$, Apple DOS $^{\circledR}$ are trademarks of Apple Computer, Inc.
Optimized Systems Software
Shepardson Microsystems, Inc.
20823 Stevens Creek Blvd., Bldg. C4-H
Cupertino, CA 95014
(408) 257-9900

DAIm

DAIM is a complete disk operating system for the ROCKWELL INTERNATIONAL AIM 65. The DAIM system includes a controller board (with 3.3 K operating system in EPROM) which plugs into the ROCKWELL expansion motherboard, packaged power supply capable of driving two $51 / 4$ inch floppy drives and one or two disk drives mounted in a unique, smoked plastic enclosure. DAIM is completely compatible in both disk format and operating system functions with the SYSTEM 65. Commands are provided to load/save source and object files, initialize a disk, list a file, list a disk directory, rename files, delete and recover files and compress a disk to recover unused space. Everything is complete - plug it in and you're ready to go! DAIM provides the ideal way to turn your AIM 65 into a complete 6500 development system. Also pictured are CSB 20 (EPROM/RAM) and CSB 10 (EPROM programmer) which may be used in conjunction with the DAIM to provide enhanced functional capability. Base price of $\$ 850$ includes controller board with all software in EPROM, power supply and one disk drive. Now you know why we say -

There is nothing like a

A Complete Morse Code Send/Receive Package for the AIM 65

> Here is a valuable program for any AIM user. While it will be of most interest to a HAM radio buff, the techniques which include the use of timers, interrupts, table lookups, and so forth should be instructive to everyone.

I. FEATURES:

A. Send Morse code using the AIM 65 keyboard. A 256 character buffer permits typing ahead.
B. Send pre-loaded Morse code messages. Three messages totaling 256 characters can be sent.
C. A simple interface circuit allows the program to operate as an electronic keyer.
D. Code speed in words per minute is entered on the keyboard and displayed on the AIM 65 display
E. Control of the entire program is from the keyboard.
F. A single integrated circuit provides the interface for receiving Morse code.
G . The received code is converted to alphanumeric characters on the AIM 65 display, and is scrolled left as the code is received.
H. Code speed is adjustable from 5 to 99 wpm.

II. OPERATING INSTRUCTIONS

The following paragraphs serve as an operating guide for the program.
A. Load the program given in the listings and construct the interface circuits shown in Figures 1 and 2. The crosscoupled NAND gate interface in Figure 1 is not needed if you do not operate the program as a paddle-type electronic keyer. Set the P register to zero before starting the program.
B. Execution begins at address $\$ 0500$. After initializing the program, three messages (called A, B and C) may be entered from the AIM 65 keyboard. As messages are entered they will appear on the display, and they will be recorded by the thermal printer if the printer is on. If a mistake is made, pressing the DEL key will clear the character and a new character may be entered. The RETURN key is pressed when a message is complete. An example of a message is "CQ CQ CQ DE KOEI KOEI K." Message A is the first one entered, message C is the last. The sum of the characters including spaces cannot exceed 256 . Pressing the RETURN key at the end of the third message causes the program to proceed to the keyboard-send mode. If you do not have any messages to place in memory, hit the space bar and the RETURN key three times in succession to enter the keyboard-send mode.
C. In the keyboard-send mode, pressing a key will cause the corresponding Morse character to be sent, while pressing a control key will cause the corresponding control operation (described below) to be carried out. The keyer will also operate at this time if you wish to use the keyer rather than the keyboard.
D. The first thing you will want to do in the keyboard-send mode is set the code speed. Press the CTRL key; and, while holding down the CTRL key, press the S key (S is for "speed"). Release these keys and then enter the code speed at which you wish to operate. The two-digit decimal number should appear at the far left of the display.
E. Pressing CTRL A, B, or C will cause the corresponding message to be sent. Any set of spaces in any of the messages may be interrupted by the keyer (to fill in an RST report, for example), but they will not be interrupted by keyboard entries other than control functions.
F. Morse code may be sent from the keyboard by typing the characters. They appear on the display as they are typed, and they disappear from
the display when they are sent. You can type ahead of the Morse code being sent by filling a 256 character buffer. (No warning is given for a full buffer because, in my experience, you rarely get 256 characters ahead.) If while sending Morse code with the keyboard you find that you have made a mistake, perish the thought, a delete function has thoughtfully been provided. Use the DEL key to try to get to the mistake before the send program gets to the character (this can be challenging at high code speeds or with slow fingers). Also, if you delete when there are no characters left to delete, you will get the contents of the entire buffer. Hit the RETURN key if this happens. RETURN starts the entire program over.
G. The RETURN key serves as a panic button. It will restart the program when you are in the keyboard-mode. It can get you out of desperate situations. The RETURN key followed by the F1 key puts you right back in the keyboard-send mode without affecting the messages A, B, and C .
H. The speed can be changed at any time, even in the middle of a message or when the send buffer has characters left to be sent. However, the CTRL S interrupts the program until the two-digit number is entered; so if you are in the middle of a dot or dash, the transmitter will remain on until you finish entering the speed. At that time the code element, the character, and the remaining message will be sent at the new speed.

1. If you wish to preload the buffer while the "other guy" is sending, you can press CTRLL (L is for "load"). The program loops while you load the buffer.
J. CTRL K returns the program from the load loop (or the receive mode) to start sending the code in the buffer. CTRL K always sends the program back to the keyboard-send mode, disabling the CTRL L mode and the receive mode.
K. CTRL R sends the program to receive code. The program will copy code over a wide range of code speeds, so adjustments in the code speed are infrequent. However, if you want to be "right on," the left-most digit of the speed display will blink if your speed is too fast, while the right-most digit will blink if your speed is too slow. Blinking digits are produced by measuring the incoming dot length. Variations in the dot length of the incoming code may cause both digits to blink. Then you are "right on!" Noise spikes are typically regarded as excessively short dots and will cause the left-most digit to blink.

Figure 1: Interface Circuit for the Keyer. Some transmitters will require a relay for keying. This interface circuit may be omitted if you do not wish to operate in the keyer mode.

L Do not spend a lot of time trying to zero-in on someone's code speed. The finite resolution of the speed settings prevent a measurement that is more accurate than about 2 wpm. Variations in the weight ratio and other personal characteristics of sending will also affect the actual speed. The code-speed measurement will be accurate for machine-sent code, from W1AW or another AIM 65 for example. The received code will appear on the AIM 65 display moving from right to left. A too-high speed setting is better than too low.
an LM567 tone decoder, is narrow, so tuning is delicate. Watch the LED output carefully until it blinks in syncronism with the incoming code. Practice copying W1AW broadcasts until you become familiar with the operating of the receive mode. Remember that an AIM 65 and an LM567 are somewhat less powerful than the human mind and the ear when copying faint signals in the presence of noise.

N . You can return from the receive mode to the keyboard-send mode by the CTRL K operation.

M : The bandwidth of the interface circuit,

Figure 2: Interface Circuit for the Receive Mode. The 5 K potentiometer is adjusted to correspond to the center frequency of the CW note. The signal is tuned with the receiver until the LED flashes in unison with the code being received.

TABLE I. Routine Location Table.

III. BACKGROUND

Morse code send/receive programs have appeared in several forms in the literature. Consult the bibliography forsome useful references. The routinesused in this program have previously been described by the author's articles in MICRO (MICRO is published by MICRO INK, Inc., P.O. Box 6502, Chelmsford, MA 01824), and will not be described in detail here. Table 1 locates the various routines, and the references given in the bibliography will explain most of these routines.

The keyboard is read on an interrupt basis, making extensive use of the monitor subroutine ONEKEY at \$EDO5. Also, the keyboard-read routine duplicates the monitor subroutine GETKEY at \$EC40, with some important modifications for interrupt operation. The T1 timer on the user 6522 is used to produce interrupts every $\$ 8000$ microseconds, at which time the keyboard is scanned.

The Morse code receive algorithm may be summarized as follows: Define the presence of a tone as a mark and the absence of a tone as a space. The receive program idles in a loop until the leading edge of a mark element produces an interrupt request (IRQ). At that time, a markcounter memory location is incremented at 1024 microsecond intervals until the mark is gone. During a space a spacecounter memory location is incremented. When the space-counter is equal to $1 / 2$ the dot length as determined by the speed setting, then the mark-counter memory location is examined to determine if the mark was a noise pulse, a dot, or a dash. If the mark counter was less than $1 / 2$ the dot length, the mark is regarded as a noise pulse. If the mark counter is between $1 / 2$ the dot length and twice the dot length, the mark is regarded as a dot. If the mark counter exceeds twice the dot length, the mark is recorded as a dash.

As soon as a decision is made about the mark counter, it is cleared to prepare it for the reception of the next Morse code element. Meanwhile, the space counter is continually being incremented once every 1024 microseconds. When it exceeds twice the dot length, the program concludes that an entire Morse character has been received; and the corresponding alphanumeric character is displayed on the AIM 65 display. As the space counter is incremented further, it reaches four times the dot length; at which time the program decides that a word space has been sent, and a space appears on the AIM 65 display. At this time the space counter is cleared, the speed setting is checked to see if the operator changed the speed setting on the AIM 65, and the program returns to the wait loop to wait for the next mark.

The author is aware of receive programs that use automatic calibration of tracking on the incoming code speed. Consult the bibliography for details. My own experience is one of frustration because the presence of noise and interfering signals affects the automatic calibration, although I have heard reports that Bob Kurtz's program works nicely. In the present case, we have used manual control of the code speed with good results. Some experience and practice is useful. Bob Kurtz's program could be adapted for the AIM 65, and could also be adapted to work with the present send programs.

IV. BIBLIOGRAPHY

I. Pollock, James W., "l000 WPM Morse Code Typer," 73, January 1977, p. 100.
2. Ockers, Stan, "Code Test," The First Book of Kim, Orb, Argonne, Illinois, 1977, p. 56.
3. Pollock, James W., "A Microprocessor Controlled CW Keyboard," Ham Radio, January 1978, p. 81

TABLE I. Routine Location Table, continued.

LOCATIONS FUNCTION
\$06EE - \$073F - Interrupt routine for Morse code receive program.
$\$ 0750$ - \$07A5 - Control S routine. Converts decimal entry of speed to
the number needed to load the timer.
$\$ 07 A B-\$ 07 B 5$ - Subroutine TMELOAD. Used to load the timer for the receive program.
\$07B6 - \$07C3 - Subroutine UNIITLED. Used to display the Morse code character that has just been decoded by the receive program.
\$0820 - \$0901 - Receive routine.
4. DeJong, Marvin L., "A Complete Morse Code Send/Receive Program for the KIM-1," MICRO, April-May 1978, p. 7.
5. Kurtz, Bob, "Morse Code Reader Program," 6502 User Notes, No. 11, p. 9.
6. DeJong, Marvin L., "Build the KIM

Keyer," 73, September 1979, p. 80.
7. DeJong, Marvin L., "An AIM 65 Notepad," MICRO, September 1979, p. 11.
8. DeJong, Marvin L., "AIM 65 in the Ham Shack," MICRO, September 1979, p. 29.

रे＊＝662B
150

962F H8 TA4
0630 B6 LD 00， 4
9632 BA TKA
663548 FHH
$0634 \mathrm{BO} \mathrm{LDA} 9200 \%$
6E37 AR TAK
563858 LL
063926 J5R 05 23
863078 SEL
063068 PLA
963E AH THK
D63F D9 DMF 9092． 4
0642 Fh EDR 0648
0644 E8 INK
964545 MP 9632
8648 E0 RTS
0649 Cg GMP \＃00
964B D0 BNE 5650
864 D 4 JPF 550 J
$9650 \mathrm{CP} \mathrm{MP} \# 12$
0652 D0 BNE 9657
0654 4 JmP 9 OQ
9657 4E JMP 9947
065月 En hof
965 ER सDP
Q650 EA AOP
665 EA NOP
665 EA सOP
96SF En NOP
g660 R2 $4 D 8413$
6652 8月 TKA
6663 48 PH月
6664 BO LDA B 438 K
065709 JRA \＃80
966920 JSR EFTE
966068 PLA
0650 AR TAK
06EE CR DEK
066 F 10 BPL 0662
667160 RTS
0672 B0 STA A440
9675 AQ LDK \＃82
0677 BO LDR A438，$\%$
ge7f CA DEK
067 E 90 STA A4 28%
ge7E EQ FHK
967F ES INW
d680 ED CP \％ 45

$\frac{50}{50}:=0682$	
9682908	80， 967
0684608	RTS
9685 A2	L0k \＃10
6687 B0	LDA A43R， 8
968月 E9 I	Ind
968 E 905	STA 4.3 A．$\%$
bege CA	DES
968F CA 0	DEX
9690108	8 CL 9687
0692 月9	LDA \＃20
969480	ETA A43日
969728	JSe 9660
969 608	RTS
$9698 \mathrm{H2}$	LOX \＃12
6690 H9	LDA \＃20
669790	STh H438， X
9642 CA	OEK
96A3 10 E	日PL 969 F
664560	RTS
96月6 $28=$	SES
96月7 65	LDA 22
9649 E5	SEC 20
gene 09	Ctre 42
96月0 Eb	ECS 968 F
beaf 85	STA 24
968128	SEC
9682 ח9	LDA \＃11
9684 ES	50， 24
96E6 RA	TRX
0687 R9	LDA $\# 20$
968990	5 Th H43月，
日60¢ 29	J50 0660
968F 68 －	RTS
960 48	PHA
96418 c	TK日
662248	PHA
060298	THA
960448	PHR
9655 月0	LDA B000
96， 29	Alo \＃10
DESA FQ	EEQ gete
DEGE A0	LDA A000
D6， 38	8 mI 660 ？
9601 20	JSE 55EE
9604 45	．ThP b60日
9607 28	JSR 95E4
日60日 AO	LDA H0ge
日600 0\％	A ASL．
860 E 10	8PL 9650
068968	9 PLA

＜ $\mathrm{C} *=072 \mathrm{C}$
750

Morse Code Listings, cont'd.

$\begin{array}{lc} \mathrm{B} & 16 \\ \mathrm{~B} & 68 \\ \mathrm{~B} & \mathrm{~A} \\ \mathrm{~B} & 19 \\ \mathrm{P} & 15 \\ E & 989 \\ \mathrm{~B} & 18 \end{array}$

Q

$$
50
$$

gegd De bne gefs

$$
\text { ggef AS } \mathrm{LDA} \text { in }
$$

$$
\text { bbF } 1 \text { C5 DMP } 16
$$

$$
\text { 98F } 90 \text { B0e } 960 ?
$$

$$
\text { gefs } 20 \text { J5e } 9786
$$

$$
\text { berg } 46 \text { Jmp gego }
$$

gere be lof \#मD
berD Re LDK \#81

$$
\text { gerf } 46 \text { Jmp gene }
$$

$$
0902 \mathrm{EA} \mathrm{NOP}
$$

$$
0993 \text { EA NOP }
$$

$$
0 g g 4 \mathrm{RD} \text { LDR nget }
$$

$$
\text { g907 A0 LDA } 8482
$$

Classified Ads

OSI software-cursor 2 (back space \& clear screen from keyboard) for all comp. with D/CW/M on break $\$ 5.95$; Chess (full graphics) $\$ 19.95$. Word process (cassette) \$9.95; Backgammon $\$ 9.95$; (3) card game pack $\$ 15.95$; Utility prog's, memory map, etc. Catalog $\$ 1.00$. Send to:

Joseph Endre
Progressive Computing
3336 Avondale Court
Windsor, Ontario
Canada, N9E 1X6
SYMIKIM Appendix - changes for first book of KIM games on 1 K SYM: $\$ 4.25$ US-ppd. (4 oz.). FBOK \$9.00, combo $\$ 12.50$ (2 lb.) Cal. res. add 6%, foreign orders add shipping for desired method. From:

Robert A. Peck
P.O. Box 2231

Sunnyvale, CA 94087
100 percent PET disk oriented Macro Assembler/Text Editor (MAE) Development software. Includes a new version of our ASSM/TED written specifically for the 32 K new ROM PET and 2040 disk drive. Features macros, conditional and interactive assembly, and includes a relocating loader program. $\$ 169.95$ includes diskette and manual. Send $\$ 1.00$ for details.

Eastern House Software
3239 Linda Drive
Winston-Salem, NC 27106
ATTENTION SYM-1 OWNERS: Modify your SYM to have 8 K of 2114 RAM on board with the WTAAY piggyback RAM board. Bare board plus instructions is $\$ 5.00$ (plus a self addressed, stamped envelope per board. The new W7AAY RAE-1/2 board plugs into and extends ROM socket p3 so that the two chip version of RAE only needs one SYM socket. Completely assembled, with instructions for $\$ 10.00$ postpaid in the USA. Order from:

John M. Blalock
P.O. Box 39356

Phoenix, AZ 85069
AIM 65 Newsletter
six bimonthly issues for $\$ 5.00$ in U.S. and Can. ($\$ 12.00$ elsewhere).

The Target, c/o Donald Clem
RR number 2
Spencerville, OH 45887
PET MACHINE LANGUAGE GUIDE Comprehensive manual to aid the machine language programmer. More than 30 routines are fully detailed so that the reader can put them to immediate use. For either Old or New ROMs. $\$ 6.95$ plus .75 postage. VISA or Mastercharge accepted. Order from:

Abacus Software
P.O. Box 7211

Grand Rapids, MI 49510

SYSTEM EXPANSION

K-1012

- 12 PROM SOCKETS - 2708/TMS 2716, USES THE POWER OF ONLY 1 PROM.
- 32 BIDIRECTIONAL I/O LINES
- FULL RS-232 ASYNC SERIAL COMMUNICATIONS, 75-4800 BAUD
- PROM PROGRAMMER
- K-1012A - \$295

EXPANSION FOR YOUR 6502 COMPUTER

HIGH RESOLUTION GRAPHICS

- 320×200 BIT MAPPED GRAPHICS
- 8K RAM AVAILABLE FOR USE
- EACH POINT INDIVIDUALLY ADDRESSABLE
- K-1008A - \$240, PET - \$243 (PLUS PET INTERFACE)

MULTI-HARMONIC 4 VOICE MUSIC

K-1002-2
MODEL FOR ALL PETS

K-1002
MODEL FOR KIM, AIM, SYM

- FORIER SYNTHESIZED WAVEFORMS - UP TO 16 HARMONICS
- 4 VOICES PLAY SIMULTANEOUSLY
- QUALITY D/A CONVERTER, 6 POLE FILTER AND AMPLIFIER
- HARDWARE - \$40-50, SOFTWARE - \$20

ALL MTU PRODUCTS ARE SUPPLIED WITH FULL DOCUMENTA TION CLASSED AS "BEST IN THE INDUSTRY". MANUALS MAY BE PURCHASED SEPARATELY

PET 2001-8 PET owners:

Do You Want Your PET To Be a Word Processor, Too?

Well, it can be...with Skyles Electric Works' new Word Processing PCB designed especially for the 2001-8. You'll need Commodore's new Disk Drive, of course. And you'll need an additional 8K of RAM memory. (We recommend the Skyles Memory Expansion System, of course.)
Skyles then supplies the interfacing PCB on which you can put the Commodore Word Processor chip. Or, even better, you can buy from Skyles the PCB complete with Commodore's Word Processor in place.

But wait: you can add the Toolkit at the same time; the Toolkit with the so important ten commands. Here's the lineup:
The PCB, to accept the Word Processor only $\$ 30.00^{*}$
The PCB, to accept both Word Processor and Toolkit40.00*The PCB, to accept Word Processor; Toolkit tested and installed90.00*
The PCB with the Word Processor tested and installed140.00*
The PCB with both the Word Processor and Toolkit testedand installed.190.00*

From S.E.W. only: custom designed for your PET 2001-8 to interface with most memory expansion systems. Or, even better, with the 8KB Skyles Memory Expansion System.

PET LOVERS SPECIAL:

S.E.W. MEMORY EXPANSIO.V SYSTEMS

8KB Memory Expansion System \$225
16KB Memory Expansion System $\$ 425$
24KB Memory Expansion System $\$ 625$
SPECIAL PRICE WITH PURCHASE OF ANY WORD PROCESSOR OPTION ABOVE
This offer Expires February 14, 1980

2001-8 owners, you can now use your PET for word processing. Skyles Electric Works didn't forget you...

MICRO Club Forum

MICRO is interested in having a monthly feature on 6502 -related clubs. We would like to publish the names, locations and activities of groups that could be of interest to our readers. We attempted to start this feature in the past; but because of technical and publication problems, it fell by the wayside. We are now ready to get it underway.

If you are a member of such a club, have your representative register your group with us. A form for this purpose is included on our tear-out sheet. In return, we will send a free one-year subscription to MICRO for your club's library.

We would like this feature to be as helpful to our readers as possible. We welcome any information that will be of interest to other clubs; i.e., what clubs do, how they get started, what they publish, meeting format, their purpose, etc.

We are publishing as complete a list as we presently have of interested clubs. We will update it periodically, much like our bibliography section. Start increasing your membership and give your group new exposure by telling others about yourselves.

Apple Group - New Jersey

Meets the 4th Friday of every month, 7:00 p.m., at:
Union County Technical Institute
1776 Raritan Road
Scotch Plains, N.J.
Contact:Apple Group-N.J. c/o Steve Toth
1411 Greenwood Drive
Piscataway, N.J. 08854
Tel: (201) 968-7498
The NYC User Group
The Drysdale Security
55Water Street
New York, NY 10004
Contact: Pres. Neil Shapiro
home: (516)-579-4295 (after 6 p.m.) or office: (212)269-4808

PACS PET User Group

Meets the third Saturday (II:00 a.m.) every
month in the:
Science Building
LaSalle College
20th and Onley Avenue
Philadelphia, PA 19191

Washington Apple Pi

Meets the fourth Saturday (9:30 a.m.)
every month at:
George Washington University
Rm. 206, Tompkins Hall
23rd and H Streets N.W.
Washington, DC
Write: Washington Apple Pi
P.O. Box 34511

Washington, DC 20034
or call: Sandy Greenfarb, (301)674-5982
Publishes a monthly newsletter.

South Carolina Apple

Meets second Tuesdays (7:30 p.m.) at:
Byte Shop
1920 Blossom Street
Columbia, SC 29205
Write: P.O. Box 70278
Charleston Heights, SC 29405
WAKE -
Washington Area Kim Enthusiasts
Meets the third Wednesday ($7: 30$ p.m.) of every month at:
McGraw-Hill Continuing Education
Centerin Washington, D.C..
Contact: WAKE, c/o Ted Beach
5112 Williamsburg Boulevard
Arlington, VA 22207
or phone (703)538-2303
Miami Apple Users Group (M.A.U.G.)
Contact: David Hall, Secretary
2300 N.W. 135th Street
Miami, FL 33167
Sun Coast Apple Tree (SCAT)
Meets first and third Thursdays (7:00 p.m.) at:
The Computer Store
21 Clearwater Mall
Clearwater, FL 33516

COACH -

Central Ohio Apple Computer Hobbyists
Meets the third Saturday (l:00 to 5:00 p.m.)of every month

Contact: Tom Mimlitch
1547 Cunard Road
Columbus, Ohio 43227
Phone (614) 237-3380

APPLE Dayton

Meets the second Wednesday of odd numbered months and the second Thursday of even numbered months (7:30 p.m.) at:
Computer Solutions
Contact: Robert W. Rennard
2281 Cobble Stone Court
Dayton. OH 45431
Phone: (513) 426-3579
Madison Pet Users Club
Meets monthly at:
Washington Square Building
1400 East Washington Avenue
Madison, WI 53913
Contact: Ben A. Stewart
501 Willow
West Baraboo, WI 53913
Micro and Personal Computer Club of St. Louis
Meets monthly at:
Futureworld, Inc.
12304 Manchester Road
St. Louis, MO 63131
Contact: Mr. KunihiroTanaka
314) 645-4431

Tulsa Computer Society
Meets the last Tuesday (7:30 p.m.) of every month, at:
Tulsa Vo-Tech School, seminar center,
3420 S. Memorial Drive
Tulsa, OK

The Apple Corps

Meets the second Saturday (2-5 p.m.) of each month at:
Greenhill School
14255 Midway Road
Dallas, TX

Apple User Group

Meets the second Tuesday of each month at:
High Technology of Tulsa Computer Store
2601D S. Memorial Drive, Tulsa
For information on both of the above groups, write:
The Tulsa Computer Society
P.O. Box 1133

Tulsa, OK 74101

Appleseed

Meets monthly at:
The Computer Shop
6812 San Pedro
San Antonio, TX 78216
(512) 828-0553

The Austin Apple Corps

Meets first and third Tuesdays (7:00 p.m.) of every month.
Contact: Mike Palmore, (512) 442-487I/447-0332; Kris Cobb (512)837-7228/443-7711; or Lenny Fein (512)441-3220/471-1154.

The L.A. Apple Users Group
Meets the first Friday (7:30 p.m.) of every month at:
Allstate Savings Community Room 8800 S. Sepulveda Boulevard Los Angeles, CA.
Contact: Philip A. Wasson
9513 Hindry Place
Los Angeles, CA 90045

The San Fernando Valley 6502 Users Club Meets the second Tuesday (8:00 p.m.) of every month at:
Computer Components Inc. of Burbank 3808 West Verdogo Avenue
Burbank, CA 91505
Contact: Larry Goga
3816 Albright Avenue
Los Angeles, CA 90066
Publishes a monthly newsletter.
Honolulu Apple Users Society
Meets the first Monday of each month at: Computerland Store in Honolulu.
Contact: Bill Mark
98-1451-A Kaahumanu Street
Aiea, Hawaii 96701
Phone: (808)488-2026
Northwest Pet User's Group
Contact: John F. Jones
2134 NE 45th Avenue
Portland, OR 97213
Phone: (503)281-4908
Northwest Pet Users Group
Meets monthly at:
Seawel Marketing
315 B N.W. 85
Seattle, WA
Contact: Jeffrey Dukes
15346 SE 307
Kent, WA 98031
Phone: (206)631-1973
A.P.P.L.E.

Meets the third Tuesday of every month.
Contact: Ralph Thiers
8710 Salty Drive, NW
Olympia, WA 98502
Apples British Columbia ComputerSociety
Meets the first Wednesday of every month.
Contact: Gary B. Little
101-2044 West Third Avenue
Vancouver, British Columbia,
Canada V6J 1L5
Phone: (604)731-7886
The North London Hobby Computer Club Different groups within the club meet many times weekly, in addition to a clubwide monthly meeting.
Contact: Stephanie Bromley
The Polytechnic of North London
Holloway, London N7 8DB
Phone: 01-607-2789
DeVlaamse Minicomputerclub V2W
Lambrechtshoekenlaan 171b6
2060 Merksem, Belgium

> KIM/SYM/AIM-65-32K EXPANDABLE RAM DYNAMIC RAM WITH ONBOARD TRANSPARANT REFRESH THAT IS COMPATIBLE WITH KIM/SYM/AIM-65 AND OTHER 6502 BASED MICROCOMPUTERS.

$\left\{\begin{array}{l}W \\ W \\ W\end{array}\right.$WITH 32 K RAM
WITH 16 K RAM
WITHOUT RAM
\qquad $\$ 419.00$ WITHOUT RAM CHIPS $\$ 279.00 .00$
HARD TO GET PARTS ONLY (NO RAM CHIPS) . $\$ 109.00$ BARE BOARD AND MANUAL $\$ 49.00$ MAY BE CONNECTEDTOPETUSING ADAPTOR CABLE. SS44-E BUS EDGE CONNECTOR. - USES +5V ONLY (SUPPLIED FROM HOST COMPUTER BUS). 4 WATTS MAXIMUM. - BOARD ADDRESSABLE IN 4K BYTE BLOCKS WHICH CAN BE INDEPENDENTLY PLACED ON 4K BYTE BOUNDARIES ANYWHERE IN A 64 K BYTE ADDRESS SPACE

* ASSEMBLED AND TESTED BOARDS ARE GUARANTEED FOR ONE YEAR AND PURCHASE PRICE IS FULLY REFUNDABLEIF PURCHASE PRICE IS FULLY REFUNDABLE IF
BOARD IS RETURNED UNDAMAGED WITHIN BOARD IS
14 DAYS.
BUS BUFFERED WITH 1 LS TTL LOAD.
- 200 NSEC 4116 RAMS.
* FULL DOCUMENTATION

PET INTERFACE KIT \$49,00

CONNECTS THE ABOVE 32K EXPANDABLE RAM TO A 4 K OR 8K PET. CONTAINS EXPANSION INTERFACE CABLE, BOARD STANDOFFS, POWER SUPPLY MODIFICATION KIT AND COMPLETE INSTRUCTIONS.
6502. 64K BYTE RAM AND CONTROLLER SET MAKE 64 K BYTE MEMORY FOR YOUR 6800 OR 6502. THIS CHIP SET INCLUDES
$\star 32$ M5K 4116-3 $16 \mathrm{KX1}, 200$ NSEC RAMS. * 1 MC3480 MEMORY CONTROLLER.

* 1 MC3242A MEMORY ADDR
MULTIPLEXER AND COUNTER.
* DATA AND APPLICATION SHEETS. PARTS
* TESTED AND GUARANTEED. $\$ 325.00$ PER SET

I6K X 1 DYNAMIC RAM
THE MK4116-3 IS A 16,384 BIT HIGH SPEED NMOS, DYNAMIC RAM. THEY ARE EQUIVALENT TO THE MOSTEK, TEXAS INSTRUMENTS, OR MOTOROLA 4116-3.

* 200 NSEC ACCESS TIME, 375 NSEC CYCLE TIME.
* 16 PIN TTL COMPATIBLE
* BURNED IN AND FULLY IESTED.
* PARTS REPLACEMENT GUARANTEED FOR ONE YEAR $\$ 8.50$ EACH IN OUANTITIES OF 8

BETA COMPUTER DEVICES P.O. BOX 3465
ORANGE, CALIFORNIA 92665 (714) 633-7280

CALIF RESIDENTS PLEASE ADD 6\% SALES TAX MASTERCHARGE \& VISA ACCEPTED PLEASE ALLOW 14 DAYS FOR CHECKS TO CLEAR BANK PHONE ORDERS WELCOME PHONE ORDERS WELCOME

ALL ASSEMBLED BOARDS AND MEM
ALL ASSEMBLEO BOAROS ANO MEM. REPLACEWENT WARANTY.

The Great Superboard Speed-Up and Other RAMblings

I do not know if Bufferin is twice as fast as Aspirin, but here is all you need to make your OSI Model 600 board run twice as fast as it normally does.

Jack Robert Swindell
P.O. Box 8193
Canton, OH 44711

The OSI Superboard 11, Challenger 1 P is a great machine - fast so you can really get the job done. Not bad considering that it is running at under 1 MHZ . Wouldn't it be even nicer running at 2 ? Don't start jumping up and down and barking yet, we have a few hurdles to jump first. They are not really tall ones, but you had better know where they are at instead of stumbling into them.

The model 600 board was designed to run the 6502 at about 983 KHZ or almost 1 MHZ . This meant that they could keep the cost down by having highly efficient software resident in ROM's (firmware) do the magic of making process time short instead of sloppy software with a faster clock rate to help make up for it. The cost saving is in the RAM...it only seems to be good for 1 MHZ or thereabouts. Apparently the same Basic in ROM is used in several OSI computers with the I/O handling controlled by a monitor/support ROM unique to each model (or series). If this really is the case (does anyone know for sure?) then the Basic in ROM must be able to operate at 2 MHZ to prevent having to stock multiple grades of ROM (which is a rather expensive proposition) for the different speeds of CPU's.

The other thing that makes me think that there is only one grade of Basic in ROM is that there are no suffix marks on the ROM's to indicate that they might have been sorted for speed. It is possible that the monitor/support ROM was only specified to guarantee operation at 1 MHZ as that is the intended processor operating speed for the 600 series board.

As this ROM is probably unique to the model 600 and would not appear on the 2 MHZ board, the 2 MHZ capability may not have been specified for this chip.

There is one other thing to consider before delving into the hardware aspect of this project. Do you have any optional boards tied into your 600 board? Especially memory...the original factoryinstalled RAM on my card was not able to make 2 MHZ ; therefore, I most certainly wouldn't count on their expansion RAM handling double the normal recommended speed. Translated: The memory that you already have probably won't work at 2 MHZ and will have to be replaced (OUCH). Perhaps you could trade with someone. Well, let's not jump the gun and start ordering parts yet, there is always that chance that your memory might be different than mine and will work OK...I hope so. My originals were 2114L's by SEMMI. I don't know what happens if you have a mini-floppy tied in and then double the speed. Also assume that your warranty is shot once you modify it. You might want to wait until it expires.

The first thing to do is to decide whether or not you want to go any further than just reading this article.Remember: Neither the author nor MICRO guarantee the safety or operation of this modification, nor should you expect the manufacturer or service department to honor any warranties after you have modified your equipment. Mostly what I am saying is that if you don't understand what you are doing: DON'T DO IT! And...if you goof up and ruin your machine you did it yourself. I don't know how to say it in proper legal-
ese, but you get the picture.

TURN OFF THE POWER FIRST!!!!

The illustration applies to my model 600 CPU , revision B. What this modification is doing is moving the tap on the clock circuit divider chain one divide by two closer to the oscillator. You're sure that you want to do this? OK...cut the line as shown in the illustration. You have just severed the clock line going to pin 37 on the 6502. Take a small piece of insulated wire and make a jumper like in the illustration. You won't have to strip off very much insulation at each end to do the job. Solder it in, again see the illustration, taking care not to short any of those eentsy conductors nearby. Now the CPU will have twice the clock speed as before. Now to see how it turned out.

I hope your memory makes it as is...we'll soon see. Connect the video monitor cable and turn on the monitor. Do not connect any off-card peripherals of any sort yet. Now apply power to the CPU and press BREAK. Does the screen show any characters other than D/C/W/M? If so, jump to the next paragraph. Press C and finish off the usual initialization routine. If there are any incorrect characters, jump to the next paragraph. Try to run a few simple two or three line programs and solve some easy problems in the command mode. If anything didn't work satisfactorily, jump to the next paragraph. Congratulations, you are now the owner of a super-Superboard. Keep an eye open just in case any problems might develop until you feel sure that all is OK. Branch to the next sub-heading.

If you are reading this paragraph then you have a minor problem to solve. Most probably your RAM is a bit too slow. Try to borrow four 2114 RAM's known to be good at 2 or more MHZ. Pull out all ten (or eighteen) RAM's on your CPU card (note polarity), both program and video memory. Look in the back of your User's manual for the locations of U31, U39, U40 and U45. Plug in the faster 2114's here making sure that you get them in the same way that the others came out. Try to run through the initialization tests of the previous prargraphs. It should say that it has 255 bytes free. If this doesn't work, you can either try one more set of different RAM's in the hope that one of them still wasn't fast enough. No go? I'm sorry...probably one of the ROM's is a bit slow. Well, just reverse the order of steps in the modification, restore the original memory chips (making sure to put a jumper in where you cut the line and removing your modification jumper) and you're none the worse for wear.

COMMAND MODE STRING PRINTING

I have one small item of curiosity to throw in before I vector off into oblivion. Type (in command mode) ?" 67 or 68 characters", press RETURN. It may or may not print the string and will almost always print a syntax error at some nonexistent line number. Branch to next article.

HAPPY COMPUTING!

Figure 1

SUPER-TEXT ${ }^{\text {М }}$

STANDARD FEATURES

- single key cursor control
- automatic word overflow
- character, word and line insertion
- forward and backward scrolling
- automatic on screen tabbing,
- single key for entering "the"
- auto paragraph indentation
- character, word and line deletion
- ditto key
- multiple text windows
- block copy, save and delete
- advanced file handling
- global (multi-file) search and replace
- on screen math and column totals
- column decimal alignment
- chapter relative page numbering
- complete printer tab control
- line centering
- superscripting and subscripting
- two color printing
- underscoring and boldface
- user defined special functions

FAST EDITING

Super-Text was designed by a professional writer for simple, efficient operation. A full floating cursor and multiple text screens facilitate editing one section of text while referencing another. Super-Text's advanced features actually make it easier to operate, allowing you to concentrate on writing rather than remembering complicated key sequences.

FLOATING POINT CALCULATOR

A built in 15 digit calculator performs on-screen calculations, column totals and verifies numeric data in statistical documents.

EXCLUSIVE AUTOLINK

Easily link an unlimited number of on-line files on one disk or from disk to disk. Autolink allows you to search or print all on-line files with a single command. Typical files of items that can be stored in this way include personnel files, prospect files, maintenancé records, training records and medical histories.

The Professional Word Processor

for the Apple II and the Apple II plus

ADVANCED FILE HANDLING

Single key file manipulation and complete block operations allow the user to quickly piece together stored paragraphs and phrases. Text files are listed in a directory with a corresponding index for fast and accurate text retrieval.

PRINTER CONTROLS

Super-Text is compatible with any printer that interfaces with an Apple. Print single or multiple copies of your text files or link files and they will be automatically printed in the specified order. User defined control characters can activate most special printer functions.

MODULAR DESIGN

This is a modularly designed system with the flexibility for meeting your future word processing needs. The first add-on module will be a form letter generator for matching mailing lists with Super-Text form letters. The form letter module will be available in the first quarter of 1980 .

INTRODUCING . . . NIBBLE THE REFERENCE FOR APPLE COMPUTING

NIBBLE IS:

A SOFTWARE GUIDE for high quality Applications Programs for your Home and Business.

NIBBLE IS:

A REFERENCE GUIDE to new Programming Methods.

NIBBLEIS:

A BUYERS GUIDE for making purchase decisions on new products.

NIBBLEIS:

A CONSTRUCTION PROJECT COOKBOOK for adding function and value to the system you already own.

NIBBLE IS:

A COMMUNICATIONS CLEARING HOUSE for users, vendors, and associations.
Each issue of NIBBLE features at least one significant new application program of commercial quality. The programs in NIBBLE are surrounded with articles which show how to USE the programming methods in your OWN programs.
Examples of upcoming articles:Modeling and Forecasting Your Business \square Build a Two-Tape Controller for \$12 Arcade Shooting Gallery - Save Your Quarters! \square Data Base Management System I, II, III

And many many more! NIBBLE will literally 'Nibble Away' at the mysteries of your system to help you USE IT MORE. In 1980, the principal featured system is the Apple II.

Try a NIBBLE

(C) 1980 by micro-Software Publishing and Research Co..
Lincoln. Mass. 01773 . All rights reserved. *Apple II is a registered trademark of
Apple Computer Company

KIM-1 Tape Recorder Controller

Some techniques for using a 6502 micro for controlling switches are presented. The particular application is for a KIM to control a tape deck, but the concepts are quite broad in scope.

Abstract

OBJECTIVE The Kim- 1 microcomputer is to be used to control the four functions (play, rewind, wind and stop) of a Tandbert 9000 X open-reel tape deck by way of the remote control socket at the back of the deck. This control will enable the user to program the computer to automatically locate and play a sequence of songs previously selected.

METHOD

The heart of the operating program is the tape counter displayed on the address LED's which simulate the mechanical tape counter on the deck itself. The actual program increments or decrements this counter, compares the desired location to the present counter, and then directs the tape deck on the result of that comparison. A description of each of the blocks of the program flow chart follows:

Initialization-

Here the counter, data register, and x and y registers are cleared. The data direction register is set to FF for an output condition. the x-register is loaded with the first song selection at location 0000 plus the y-register. The contents of both registers are then saved, using a STORE subroutine.

Compare-

The high order byte of the counter (OOFB) is compared with the contents of location 0050 plus the x-register. This location is reserved for the high order bytes of any song starting location. If the result is either positive or negative, the program branches to wind or rewind respectively. If the result is zero, the low order byte must be compared. Because of differing branch instructions, there are separate wind compares and rewind compares. Each of these takes the low order bytes of the counter (OOFA) and compares it to the contents of location 0060 plus the x-register. The program then goes to either wind, rewind or play, depending on the results.

Wind-

A 08 is placed in the data register to put the tape deck in the wind mode. The tape counter is incremented by adding 01 to 00FA. A delay loop is set up with the interval timer and the counter displayed using the SCANDS subroutine. Jump to cmp.

Rewind-

A 01 is placed in the data register to put the tape deck in the rewind

Michael Urban
General Electric
SPD Box 43
Auburn, NY 13021
bytes must be compared. The contents of the low order byte of the counter (OOFA) are now compared to the contents of the address 0080 plus the x-register which is the address of the ending location, low order byte, of the selected song. If the low order byte comparison results in a zero, the end of a song has been reached. The program sits in a delay loop waiting for the deck to catch up. The y-register is then incremented so that the next song selection can be made. Jump back to Begin.

The Interface-

Through experimentation with the remote control socket, it was found that a short between any of the function pins and ground would cause the deck to operate in that mode. A current of 2 mA was measured with a short circuit to ground. Later, it was found that a resistor to ground also worked. With 2 K between the function pin and ground, a lower current of 1 mA was obtained. This was ideal for our purposes. Relays were considered as the interface element

REEL-TO-REEL INTERFACE

FIGURE 1
but rejected because of cost and layout considerations.
The 4016 CMOS analog/digital switch was decided upon. It is an integrated circuit containing four independent switches of the configuration in figure 3. An overall view of the basic interface is pictured in figure 1. The actual wiring diagram is seen in figure 2. A 5 -volt signal coming from any of the outputs PAO-PA3 will cause a switch closure in the following order:
PA0-Rewind (01)
PA1-Play (02)
PA2-Stop (04)
PA3-Wind (08)

The numbers in parenthesis indicate the number that must be in the data register for that particular function to be performed. The resistors in figure 2 are for current limiting through the switch.

SUMMARY

For the most part, the project was a success. The only problem encountered was that of trying to synchronize the simulated tape counter speeds to those of the mechanical one on the tape deck. To better explain this, figure 4 is helpful. As can be seen in figure 4 a , the KIM's tape counter is a very linear device unlike that of the deck's very non-linear counter in figure 4b. In the wind or rewind modes, the two could never be matched because of this non-linearity. Therefore, it was decided upon to only demonstrate the program's ability to control the tape deck and locate selections on the computer tape counter. This the program did well.

The ultimate way to circumvent this problem would be to actually couple the computer to the tape deck through an optical or magnetic pick-up on one of the tape reels. In this way, the KIM would always know precisely where the tape was located. If, for some reason, this was not possible, a linear approximation could be programmed into the computer to simulate the acceleration curve of the mechanical tape counter. This would consist of three or four loops of differing speeds cascaded together to form a curve like that of figure 4c.

In recent years, commercial manufacturers have been incorporating a similar program-locating feature into cassette decks. The most notable is the Sharp RT-3388A which has its own dedicated microprocessor which will locate a particular section of the tape requested and plays from there on; it does not have the ability of playing any sequence of songs asked for by the user. In this respect, our program is superior.

FIGURE 2

INTERNAL SCHEMATIC

Figure 4
bytes must be compared. The contents of the low order byte of the counter (OOFA) are now compared to the contents of the address 0080 plus the x-register which is the address of the ending location, low order byte, of the selected song. If the low order byte comparison results in a zero, the end of a song has been reached. The program sits in a delay loop waiting for the deck to catch up. The y-register is then incremented so that the next song selection can be made. Jump back to Begin.

The Interface-

Through experimentation with the remote control socket, it was found that a short between any of the function pins and ground would cause the deck to operate in that mode. A current of 2 mA was measured with a short circuit to ground. Later, it was found that a resistor to ground also worked. With 2 K between the function pin and ground, a lower current of 1 mA was obtained. This was ideal for our purposes. Relays were considered as the interface element

REEL-TO-REEL INTERFACE

FIGURE 1
but rejected because of cost and layout considerations.
The 4016 CMOS analog/digital switch was decided upon. It is an integrated circuit containing four independent switches of the configuration in figure 3. An overall view of the basic interface is pictured in figure 1. The actual wiring diagram is seen in figure 2. A 5 -volt signal coming from any of the outputs PAO-PA3 will cause a switch closure in the following order:

> PAO-Rewind (01)
> PA1-Play (02)
> PA2-Stop (04)
> PA3-Wind (08)

The numbers in parenthesis indicate the number that must be in the data register for that particular function to be performed. The resistors in figure 2 are for current limiting through the switch.

SUMMARY

For the most part, the project was a success. The only problem encountered was that of trying to synchronize the simulated tape counter speeds to those of the mechanical one on the tape deck. To better explain this, figure 4 is helpful. As can be seen in figure 4a, the KIM's tape counter is a very linear device unlike that of the deck's very non-linear couunter in figure 4b. In the wind or rewind modes, the two could never be matched because of this non-linearity. Therefore, it was decided upon to only demonstrate the program's ability to control the tape deck and locate selections on the computer tape counter. This the program did well.

The ultimate way to circumvent this problem would be to actually couple the computer to the tape deck through an optical or magnetic pick-up on one of the tape reels. In this way, the KIM would always know precisely where the tape was located. If, for some reason, this was not possible, a linear approximation could be programmed into the computer to simulate the acceleration curve of the mechanical tape counter. This would consist of three or four loops of differing speeds cascaded together to form a curve like that of figure 4c.

In recent years, commercial manufacturers have been incorporating a similar program-locating feature into cassette decks. The most notable is the Sharp RT-3388A which has its own dedicated microprocessor which will locate a particular section of the tape requested and plays from there on; it does not have the ability of playing any sequence of songs asked for by the user. In this respect, our program is superior.

INTERNAL SCHEMATIC

C: Linear approximation

Figure 4

Address	Instruction	Label	Op Code	Operand		Address	Instruction	Label	Op Code	Operand	
0210	F8		SED	7		02BB	A9 5F	LOOP2	LDA	\＃\＄5F	
0211	18		CLC			02BD	8D 0717		STA	$\div 1024$ I．T．	ช
0212	A9 00		LDA	\＃\＄00		02C0	20 1F 1F	DISPLAY	JSR	SCANDS	$\stackrel{\square}{c}$
0214	8520		STA	0020		02 C 3	2C 0717		BIT	I．T．	O
0216	8521		STA	0021		$02 \mathrm{C6}$	10 F 8		BPL	DISPLAY	0
0218	8523		STA	0023		$02 \mathrm{C8}$	C6 24		DEC	0024	\underline{z}
021A	85 F9		STA	00F9		02CA	DO EF		BNE	LOOP2	ξ
021C	85 FA		STA	00FA		02CC	38		SEC		$\underset{\sim}{\text { u }}$
021E	85 F8		STA	O0FB	山	02CD	4C 3802		JMP	＊PULL	
0220	8D 0017		STA	PAD	Ј	02D2	8 A	STOP	TXA		
0223	A9 01		LDA	\＃\＄01	【	02D3	85 F9		STA	F9	
0225	8522		STA	0022	$\stackrel{E}{z}$	02D5	A9 04		LDA	\＃\＄04	
0227	A9 FF		LDA	\＃\＄FF	\leq	02D7	8D 0017		STA	PAD	
0229	8D 0117		STA	PADD．		02DA	A9 0A		LDA	\＃\＄0A	\vdash
022C	A2 00		LDX	\＃\＄00		02DC	8526		STA	0026	¢
022E	A0 00		LDY	\＃\＄00		O2DE	A9 FF	LOOP3	LDA	\＃\＄FF	ξ
0230	B6 00	BEGIN	LDX，Y	0000		02E0	8D 0717		STA	$\div 1024$ I．T．	0
0232	202003		JSR	STORE		02E3	201 F 1 F	DISPLAY	JSR	SCANDS	5
0235	4C 3E 02		JMP	COMPHI		02E6	2C 0717		BIT	I．T．	ω
023B	205403	＊PULL	JSR	PULL		02E9	10 F 8		BPL	DISPLAY	
023C	207003		JSR	STORE		02EB	C6 26		DEC	0026	
023E	A5 FB	COMPHI	LDA	FB		O2ED	DO EF		BNE	L00P3	
0240	D5 50		CMP，X	0050		02EF	A9 02		LDA	\＃\＄02	
0242	F0 05		BEQ	COMPLO		02F1	8D 0017		STA	PAD	
0244	1010		BPL	REWIND		02F4	18		CLC		
0246	4 C 7402		JMP	WIND		02F5	A5 22	PLAY	LDA	0022	
0249	A9 01	COMPLO	LDA	\＃\＄01		02F7	65 FA		ADC	FA	
024E	2D 0017		AND	PAD	華	02F9	85 FA		STA	00FA	
024E	FO OC		BEQ	WINDC	¢	02FB	A5 21		LDA	0021	
0250	A5 FA		LDA	FA	\sum	02FD	65 FB		ADC	FS	
0252	D5 60		CMP，X	0060	O	02FF	85 FB		STA	00FB	
0254	FO 03		BEQ	PLAY	O	0301	A9 04		LDA	\＃\＄01	
0255	$4 \mathrm{CA5} 02$	REWIND	JMP	REWIND		0303	8527		STA	0027	
0259	4C D2 02	PLAY	JMP	STOP		0305	A9 85	LOOP4	LDA	\＃\＄FF	
025C	A5 FF	WINDC	LDA	FA		0307	800717		STA	$\div 1024$ I．T．	
0255	D5 60		CMP，X	0060		030A	201 F 1 F	DISPLAY	JSR	SCANDS	
0260	F0 F7		BEQ	PLAY		030D	2C 0717		BIT	I．T．	
0262	4 C 7402		JMP	WIND		0310	10 F 8		BPL	DISPLAY	
0274	18	WIND	CLC			0312	C6 27		DEC	0027	
0275	A9 08		LDA	\＃\＄08		0314	DO EF		BNE	LOOP4	
0277	8D 0017		STA	PAD		0316	205403		JSR	PULL	
027A	A5 22		LDA	0022		0319	207003		JSR	STORE	
027C	65 FA		ADC	FA		031 C	A5 FB		LDA	00FB	
027E	85 FA		STA	OOFA		031E	D5 70		CMP，X	0070	－
0280	A5 21		LDA	0021		0320	D0 D3		BNE	PLAY	\square
0282	65 FB		ADC	FB		0322	A5 FF		LDA	OOFA	
0284	85 FB		STA	OOFB	亿	0324	D5 80		CMP， X	PLAY	
0286	A9 01		LDA	\＃\＄01	3	0326	DO CD		BNE	PLAY	
0288	8525		STA	0025	3	0328	A9 04		LDA	\＃\＄04	
028A	A9 3E	LOOP 1	LDA	\＃\＄5F		032A	8D 0017		STA	PAD	
028C	8D 0717		STA	$\div 10241$ ．T		032D	4 CH 302		JSR	PULL	
028F	201 F 1 F	DISPLAY	JSR	SCANDS		0330	EA		NOP		
0292	2C 0717		BIT	I．T．		0331	A9 0A		LDA	\＃\＄0A	
0295	$10 \mathrm{F8}$		BPL	DISPLAY		0333	B5 26		STA	0025	
0297	C6 25		DEC	0025		0335	A9 AF	LOOP5	LDA	\＃\＄AF	
0299	DO EF		BNE	L00P1		0337	8D 0717		STA	$\div 10-11.7$	
029B	EA EA		NOP			033A	201 F 1 F	DISPLAY	JSR	SCANDS	
029D	4C 3802		JMP	＊PULL		0330	2C 0717		BIT	I．T．	
02A5	38	REWIND	SEC			0340	10 F 8		BPL	DISPLAY	
02A6	A9 01		LDA	\＃\＄01		0342	C6 25		DEC	0025	
02A8	8D 0017		STA	PAD		0344	D0 EF		BNE	LOOP5	
02A8	A5 FA		LDA	FA	¢	0346	C8		INY		
02AD	E5 22		SBC	0022	\sum	0349	$4 C 30$ 68		PMP	BEGIN	
02AF	85 FA		STA	O0FA	$\underset{\text { ¢ }}{\text { ¢ }}$	0354	68	PULL	PLA		山
02B1	A5 FB		LDA	FB	$\underset{\sim}{\sim}$	0355	8530		STA	0030	
O2B3	E5 23		SBC	0023		0357	685		PLA	0031	
02B5	85 FB		STA	00FB		0358	88		PLA	0031	¢
02B7	A9 01		LDA	\＃\＄01		035B	A8		TAY		$\stackrel{\text { ¢ }}{\sim}$
02B9	8524		STA	0024		035	A8		TAY		ω

SCORE: 108
SCORE: 105
DYNAMAZE-a dazzling new real-time game. You move in a rectangular game grid, drawing or erasing walls to reflect balls into your goal (or to deflect them from your opponent's goal). Every ball in your goal is worth $\mathbf{1 0 0}$ points, but you lose a point for each unit of elapsed time and another point for each time unit you are moving. Control the speed with a game paddle: play as fast as ice hockey or as slowly and carefully as chess. Back up and replay any time you want to; it's a reversible game. By Don Stone. Integer Basic (plus machine language); $32 \mathrm{~K} ; \$ 9.95$.

ULTRA BLOCKADE- the standard against which other versions have to be compared. Enjoy Blockade's superb combination of fast action (don't be the one who crashes) and strategy (the key is accessible open space-maximize yours while minimizing your opponent's). Play against another person or the computer. New high resolution graphics lets you see how you filled in an area-or use reversibility to review a game in slow motion (or at top speed, if that's your style). This is a game that you won't soon get bored with! By Don Stone. Integer Basic (plus machine language); 32 K; \$9.95.

What is a REVERSIBLE GAME? You can stop the play at any point, back up and then do an "instant replay", analyzing your strategy. Or back up and resume the game at an earlier point, trying out a different strategy. Reversibility makes learning a challenging new game more fun. And helps you become a skilled player sooner.

WORLD OF ODYSSEY-a new adventure game utilizing the full power of Disk II, which enables the player to explore 353 rooms on 6 different levels full of dragons, dwarfs, orcs, goblins, gold and jewels. Applesoft II 48K; \$19.95 includes diskette.

PERQUACKEY-an exciting vocabulary game which pits the player against the clock. The object of the game is to form words from a group of 10 letters which the computer chooses at random. The words must be $\mathbf{3}$ to $\mathbf{1 0}$ characters in length with no more than $\mathbf{5}$ words of any particular length. Each player has only 3 minutes per turn. The larger the words the higher the score. Applesoft II 16K; \$9.95.

APPLESHIP-is a naval game in which two players enter their ships in respective oceans. Players take turns trying to blast their opponent's ships out of the water. The first player to destroy their opponent's ships may win the game. A great low-res graphics game. Applesoft II 32K; \$14.95.

> Available at your local computer store

Call or write for our free SOFTWARE CATALOG

Apple II is a registered trademark of
Apple Computer, Inc.

DEALER INQUIRIES INVITED

PDWERESOFT, INC.

P. O. BOX 157

PITMAN, NEW JERSEY 08071
(609) 589-5500

Programs Available on Diskette at $\$ 5.00$ Additional

- Check or Money Order
- Include \$1.00 for shipping and handling
- C.O.D. (\$1.00 add'tl. charge)
- Master Charge and VISA orders accepted
- New Jersey residents add 5% sales tax

Ask the Doctor

Hints for converting the SYM Tiny PILOT to work on KIM; a Slow Display for the AIM; and, a comparison chart of the AIM, SYM, and KIM expansion pinouts.

"ASK the Doctor" is intended to be a fairly regular column covering matters of interest to the AIM, SYM and KIM users. Parts I through V may be found in issues 9 (Feb '79) through 13 (June '79). Now that the "Doctor is back from vacation", the column will appear fairly regularly again.

This month we have several topics to cover:

Bob Applegate discusses some problems and solutions to using Tiny PILOT on the KIM.

Thomas M. Walsh provides a short program for use with the AIM to slow down the display when using the disassembler.

The Doctor presents a summary of the Expansion and Application pinouts for the AIM, SYM, and KIM along with a description of the KIM-4 Expansion bus structure.

Tiny PILOT for KIM

Machine language programming is very useful for some applications, but for others it is the long way around. Need to print some data? It is possible, but it is a lot of work. After programming in machine language for a year, I wanted to move up to a high level language such as BASIC. But a BASIC interpreter is not cheap. To make matters worse, most are located from 200016 and up, and my
memory ends at 07FF16. These are two very important facts to consider for any program. I tried writing my own languages but getting a good, small math package was also a major problem. When I saw Tiny Pilot by Nicholas Vrtis (MICRO \#16), I was excited! At last I had a neat way to solve some of my programming problems, and to teach some of my non-computer-oriented friends how to program.

Unfortunately, PILOT was written for a SYM, not a KIM. I decided to enter the program, using KIM subroutines in place of SYM subroutines. After entering the program, I started using the interpreter:

T: HELLO
 S:
 (@)

It is a good thing that I don't have a hardcopy terminal because a few feet of paper would have been wasted! Suspecting a mistake in my entry of the interpreter, I checked the program byte-bybyte. Everything was okay. What caused the program to print such garbage? It dawned on me after some thought.

Rereading the last paragraph in Mr. Vrtis' article revealed the answer:
"Tiny PILOT assumes that all registers are preserved by these routines."

Robert M. Tripp
The Computerist, Inc. P.O. Box 3
S. Chelmsford, MA 01824

Obviously, the KIM monitor does not preserve the registers!

The KIM subroutine OUTCH stores the X register at 00FD, and picks it up again once it is finished. My subroutine SAVOUT (used instead of calls to SYM's OUTCHR) stores the Y register at OOEE, calls OUTCH, reloads the Y register, and exits the routine. SAVIN stores the Y at OOEE, calls GETCH, reloads Y, and exits. SAVCR is a bit longer, because it has to save and restore both registers. It stores Y at the usual place, and X at 00ED. Then it calls CRLF and reloads both registers. Last, but not least, it exits the subroutine.

I located these subroutines in KIM's high RAM, so as to avoid memory problems with Tiny PILOT. Enough room is even left to add a few more statements!

Tiny PILOT is a fun language to use, even if it does have limited capabilities. I hope that some other KIM users will convert between KIM and SYM. I do not know much about SYM's monitor maybe some MICRO readers could fill me in.

Bob Applegate

Box 148
Bordentown, NJ 08505

Expansion Connector				Boards		Application Connector			Boards
PIN	AIM	SYM	KIM	$\begin{aligned} & \text { MICRO } \\ & 65 \end{aligned}$	PIN	AIM	SYM	KIM	$\begin{aligned} & \text { MICRO } \\ & 65 \end{aligned}$
1	SYNC	SYNC	SYNC	GND	1	GND	GND	GND	NC
2	RDY	RDY	RDY	SYNC	2	PA3	PA3	PA3	NC
3	Ф1	Ф1	Ф1	RDY	3	PA2	PA2	PA2	NC
4	IRQ	IRQ	IRQ	IRQ	4	PA1	PA1	PA1	NC
5	S.O.	S.O.	S.O.	S.O.	5	PA4	PA4	PA4	NC
6	NMI	NMI	NMI	NMI	6	PA5	PA5	PA5	NC
7	RES	RES	RES	RES	7	PA6	PA6	PA6	NC
8	DB7	DB7	DB7	DB7	8	PA7	PA7	PA7	NC
9	DB6	DB6	DB6	DB6	9	PB0	PB0	PB0	NC
10	DB5	DB5	DB5	DB5	10	PB1	PB1	PB1	NC
11	DB4	DB4	DB4	DB4	11	PB2	PB2	PB2	NC
12	DB3	DB3	DB3	DB3	12	PB3	PB3	PB3	NC
13	DB2	DB2	DB2	DB2	13	PB4	PB4	PB4	NC
14	DB1	DB1	DB1	DB1	14	PAO	PAO	PA0	NC
15	DB0	DB0	DB0	DB0	15	PB7	PB7	PB7	NC
16	-12V	CS18	K6	NC	16	PB5	PB5	PB5	NC
17	+12V	DBOUT	SSTOUT	NC	17	PB6	Row 0	Row 0	NC
18	CS8	POR	NC	DMA	18	CB1	Col F	Col F	NC
19	CS9	NC	NC	$+8 \mathrm{~V}$	19	CB2	Col B	Col B	NC
20	CSA	NC	NC	$+8 \mathrm{~V}$	20	CA1	Col E	Col E	NC
21	+5V	+5V	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	21	CA2	Col A	Col A	NC
22	GND	GND	GND	GND	22	NC	Col D	Col D	NC
A	AB0	AB0	ABO	GND	A	+5V	$+5 \mathrm{~V}$	$+5 \mathrm{~V}$	NC
B	AB1	AB1	AB1	ABO	B	NC	CS 00	K0	NC
C	AB2	AB2	AB2	AB1	C	¢2	CS 04	K1	NC
D	AB3	AB3	AB3	AB2	D	R/W	CS 08	K2	NC
E	AB4	AB4	AB4	AB3	E	Tape 1B-R	CS OC	K3	NC
F	AB5	AB5	AB5	AB4	F	Tape 1B	CS 10	K4	NC
H	AB6	AB6	AB6	AB5	H	Tape 2B-R	CS 14	K5	NC
J	AB7	AB7	AB7	AB6	J	Tape 2B	CS 1 C	K7	NC
K	AB8	AB8	AB8	AB7	K	NC	CS 18	Decode	NC
L	AB9	AB9	AB9	AB8	L	Audio In	Audio In	Audio In	NC
M	AB10	AB10	AB10	AB9	M	Audio Lo	Audio Lo	Audio Lo	NC
N	AB11	AB11	AB11	AB10	N	+ 12V	RCN-1	+ 12V	NC
P	AB12	AB12	AB12	AB11	P	Audio Hi	Audio Hi	Audio Hi	NC
R	AB13	AB13	AB13	AB12	R	KBD Rtn	KBD Rtn	KBD Rtn	NC
S	AB14	AB14	AB14	AB13	S	PTR Rtn	PTR Rtn	PTR Rtn	NC
T	AB15	AB15	AB15	AB14	T	KBRD	KBRD	KBRD	NC
U	Ф2	¢2	\$2	AB15	U	PTR	PTR	PTR	NC
V	R/W	R/W	R/W	Ф2	V	Tape 2A	Row 3	Row 3	NC
W	R/W	R/W	R/W	R/W	W	Tape 1A	Col G	Col G	NC
X	TEST	TEST	TEST	¢2	X	NE	Row 2	Row 2	NC
Y	Ф2	Ф2	¢2	$+5 \mathrm{~V}$	Y	Serial In	Col C	Col C	NC
Z	Ram R/W	Ram R/W	Ram R/W	GND	Z	NC	Row 1	Row 1	NC

Notes: Signals which are the same are in regular type face. Signals which are different are in bold type face.
See your computer manual for a definition of the signals. The MICRO 65 bus is identical to the KIM-4 bus.

Notes: the connections for the application connector are not defined for the MICRO 65 bus. The application connections are defined by the specific requirements of the expansion board and are generally not connected to the host computer.

Slow Down the AIM Display

This program uses AIM subroutines to slow down the display and allows the user to scan thru a disassembly, checking entries made. Holding down the space bar will stop the display at the currewnt display, jsut as at normal speed, but much more controllably.

After the program is entered into RAM, it is activated by pressing the User F-2 key for Slow Display or the User F-1 key for Normal Speed Display. The User F. 3 key is unused and is available for other purposes.

The A, Y, and X registers are pushed onto the stack at 0000 thru 0004. At 0005 and 0008, a JSR is made to the AIM Delay subroutine at ECOF, after which X, Y, and A are pulled from the stack and a JMP is made to the Normal Display entry at EF05.

The two small sections at 0013 and 001 E are used to reset the addresss which the Monitor points to as the Display Routine: A406,A407. The first subroutine resets the address to Normal Speed, the second sets the address to the Delay routine described above at address 0000 , and resets the counter at A417,A418 to FFFF. To speed up the Slow Display, change the value at 0026 to a smaller number, or at address 0005 or 0008 change one of the JSR's to the Delay routine to a NOP.

Thomas M. Walsh 5370 Shafter Avenue Oakland, CA 94618

AIM, SYM, KIM Pinout Summary

One of the features of the AIM, SYM and KIM that make them so compatible is the similarity of their Expansion and Application Connectors. This similarity makes is possible to use a variety of expansion boards: RAM memory, ROM memory, Video, etc., with any one of the three systems. There are some minor differences in the Expansion Connectors, particularly where the KIM did not define a pinout. There are major differences in the Application Connector.

When MOS Technology, developers of the 6502 and the KIM-1, designed their first expansion board, they chose to move all of the Address lines and few other lines to new locations on the Expansion Connector of their new boards. This has been called the KIM-4 Expansion Bus. Since it is used by a number of other manufacturers for expansion boards, and since it serves the AIM and SYM as well as the KIM, I propose to call it the MICRO 65 Bus. It is shown in the following chart.

SYNERGISTIC SOFTWARE presents
 THE MODIFIABLE DATABASE
 by Chris Anson \& Robert Clardy

The Modifiable Database is a general purpose, user oriented database program that can be easily customized for your specific
data management application. Create any number of application programs such as mailing lists, bibliography files, inventory controls, personnel files, accounting programs, etc. The only limitation is your own imagination.

The program uses fast and flexible machine language search and sort routines, provides for easy record editing, and can search or print up to 2 disks of records with a single command. All commands are invocable by a few keystrokes. There's never been an easier to use or more flexible data management program.

Applesoft program requires 48 K and disk
Modifier Module 1 lets you add accounting and numeric processing features to your program Modifier Module 2 lets you format your output in any way desired (columnar, standard forms, suppressed fields, etc.)
$\$ 49.50$
$\$ 15.00$
$\$ 15.00$

AVAILABLE AT YOUR LOCAL DEALER OR SEND CHECK OR INQUIRY TO SYNERGISTIC SOFTWARE, 5221120 AVE. S.E., BELLEVUE, WA 98006. WA RESIDENTS ADD 5.3\% SALES TAX

POWER A PLUS

Designed specifically, or the $A_{1} M-65$ +5 V (a) 5 A and +24 V (a) 1 A $110 \mathrm{~V} / 60 \mathrm{~Hz}$ or $220 \mathrm{~V} / 50 \mathrm{~Hz}$ Short Circuit protection Over voltage protection
Enough power to run fully loaded AIM plus several additional boards $\$ 5^{\circ 00}$

AIM ENCLOSURE ${ }^{\text {TM }}$

AIM ENCLOSURE:
A neat, safe package for the AIM 65
Room for one expansion board:
Memory Plus, Video Plus, or Proto Plus
Enclosure alone:

AIM ALL YOUR NEEDS AT US!!

"

Modified for AIM to address at 1000 (4K) boundary - at no charge. 8K Static RAM Sockets for 8 K EPROM EPROM Programmer 6522 I/O Port
Over 1200 in use.

MOTHER PLUS

The Sensible Way to Expand: Fully Buffered and Decoded Standard Bus Structure Add up to five expansion boards Audio/TTY connectors, Port Socket
Fully Assembled and Tested:

CAGE PLUS ${ }^{\text {TM }}$

VIDEO PLUS ${ }^{\text {TM }}$

Glass Teletype Software for AIM is available now and it's FREE. It works with the AIM Monitor and BASIC without any user programming.

UPPER/lower case ASCII
2 K Display RAM expandable to 4 K Provision for 2K EPROM
Add up to 128 Programmable
Characters by plugging in RAM
Supports ASCII Keyboard
Fully Assembled and Tested: $\quad \$ 245^{\circ 0}$

PROTO PLUS ${ }^{\text {TM }}$

Add Special Circuits to your system. Provisions for:

40 14/16 pin sockets

4 24/40 pin sockets
3 voltage regulators
Misc. other components
Two sets of gold plated dual 22 finger connectors with same spacing as AIM. Wire wrap or solder connections. Size: $81 / 4 \times 10^{3 / 4}$

When ordering, please specify the MEMORY PLUS modification and the VIDEO PLUS Glass Teletype software for your AIM 65 at no charge.

Documentation available for MEMORY PLUS ($\$ 10^{\circ 0}$), VIDEO PLUS ($\$ 10^{\circ 0}$) and MOTHER PLUS $\left(\$ 5^{\circ \circ}\right)$. Documentation cost will be applied to purchase price. Prices quoted do not include shipping and handling charges. Please call or write for complete catalog.

Use with the AIM 65 and MOTHER PLUS
Aluminum frame with card guides
Holds five additional boards with your AIM on top
Package your expanded AIM 65
$\$ 20^{00}$ with Mother Plus, $\$ 25^{\circ 0}$ alone.

『ll CoMPUTERRST UNG

P.O. Box 3

So. CheImsford, MA 01824

We invite you to subscribe to AppleSeed - the magazine that is to the Apple II* what SoftSide is to the TRS-80**. It offers the newest in software programming hints and ideas tailored especially for your computer. AppleSeed features challenging programs for both the do-it-yourselfer and the individual interested in pre-packaged programs and games . . your own preview of the best available on the market today. A typical slice of AppleSeed consists of one major (new 16K) commercial level program (completely listed for your keying pleasure), accompanied by two or three applications for practical use or fun, supplemented by informative articles to polish your Apple*. Get right to the core of your Apple* needs and order AppleSeed today! 12 issues, 1 year, $\$ 15.00$. AppleSeed is the newest member of . . .

6 South Street, MIIIford, NH 03055
(603) 673-5144

"Precise, humanized, well documented an excellent value" are the applauds now being given to United Software's line of software. These are sophisticated programs designed to meet the most stringent needs of individuals and business professionals. Every package is fully documented and includes easy to understand operator instructions.
DATABASE MANAGEMENT SYSTEM - A comprehensive, interactive system like those run on mainframes! Six modules comprising 42 K of programming allow you to; create, edit, delete, display, print, sort, merge, etc., etc. - databases of up to 10,000 records. Printer routines automatically generate reports and labels on demand. 60 pages of concise documentation are included. Requirements $-16-32 \mathrm{~K} \mathrm{PET}$ and 2040 Dual Disk (printer optional). . . Cost $\$ 125$
ACCOUNTS RECEIVABLE/PAYABLE - A complete, yet simple to use accounting system designed with the small businessman in mind. The United Software system generates and tracks purchase orders and invoices all the way through posting "controlled" accounts payable and accounts receivable subsystems.
Keyed Random Access file methods makes data access almost instantaneous. The low-cost solution for the first time computer user with up to 500 active accounts. Requirements-32K PET, Dual Disk, any 80-column printer. . . . Cost \$175

CASH RECEIPTS \& DISBURSEMENTS - Makes it a breeze to track all outgoing payments made by any type of business operation. Checks are tracked by number and categorized by type of expense. Sorting, summary, and audit trails make it easy to post to general ledger. This system also categorizes incoming receipts. Uses KRAM file access method. Requirements - 32K PET, Dual Disk (printer optional). ...Cost $\$ 99.95$
KRAM - Keyed Random Access Method - The new, ultra-fast access method for the PET Disk, provides keyed retrieval/storage of data, in either direct or sequential mode, by either full or partial key values. Written by United Software in 6502 machine code, and designed with the PET in mind, it exploits all the benefits of the PET Disk, allowing full optimization of your system. Eliminates the need for "Sort" routines! KRAM provides flexibility never seen on a micro before. KRAM is modeled after a very powerful access method used on large-scale IBM Virtual Storage mainframes. So "KRAM" all you can into your PET - it will love you for it. . . .Cost \$79.95
(Sublicenses available to software houses.)

PROGRAMS FOR ENTERTAINMENT

Space Intruders ("Best Game of 1979") . . \$19.95 Jury/Hostage.............. 12.50 Kentucky Derby/Roulette 9.95 Alien I.Q./Tank........... 9.95 Tunnelvision/Maze Chase 14.95 Submarine Attack 9.95 Battle of Midway 7.95 Laser Tank Battle......... 9.95 Swarm 14.95

Super Startrek 14.95 PET Music Box........... 29.95

UNITED SOFTWARE

PROGRAMS FOR BUSINESS
Checkbook................ $\$ 15.95$
Mortgage 15.95
Finance 12.95
Bonds 12.95
Stock Analyzer 22.95
Stock Options 24.95
6502 Macro Assembler ... 49.95

Look for the RED-WHITE-BLUE United Software Display at your local computer dealer, or send check or moneyorder, plus $\$ 1.00$ shipping to:

UNITED SOFTWARE OF AMERICA
750 Third Ave.
New York, N.Y. 10017
Dealer inquiries invited

CURSOR PILOT
gives any Apple II game-paddle control of the video cursor. Activate by touching 'ESC', then edit or copy with game-paddle. Supports normal keyboard controls, is transparent to your programs.
on cassette . . .

DATA HANDLER

data base management system. Supports infinite data bases on the Apple II disk drive. Structure data to meet your own needs, up to 255 fields per entry. Advanced data processing allows searching and math to generate reports, extensions, and ledgers. Use for inventory, checks, phone numbers, stocks, lab data, etc. Requires $32 \mathrm{~K} \&$ a disk drive.
\qquad $\$ 4995$

TYPESETTER

a complete HI-RES graphics character generator and editing system. Allows colors, scaling, upper/lower case, inverse, and can HPLOT letters to any point on the screen. Outputs through regular PRINT statements. Use it to label graphs, create ad displays, or print lower case. System includes 35 utility programs and character sets. When ordering, specify if for disk or ROM Applesoft. Needs 32 K with ROM, 48 K with disk.
on diskette with manual . . $\$ 2995$

HIRES UTILITY PACK

Why sweat over HI-RES graphics? Shape Generator lets you build graphic shapes with game paddles, see them at all scales, colors, and rotations. Save them to disk, and Shape Adder puts up to 255 shapes together into a table. Utility Subroutines let you position without plotting, find your last plot, and look at the screen to see it a point is on. Requires 16 K with Applesoft ROM.
on diskette . . $\$ 1495$
available at your local dealer, or call directly at:

Apple II and Applesoft are trode marks of the Apple Computer Company, Inc.

MIGHTY BYTE IS HERE

PROGRAM-APPLE II COMPANY	M F G LIST		
			Mighty Byte

Visa \& Mastercharge accepted
To introduce you to MIGHTY BYTE take $\{[5 \%$ off any order.
MIGHTY BYTE COMPUTER
P.O.Box 213

HO-HO-KUS, N.J. 07423
(201) $445 \cdot 8256$

Graphics and the Challenger C1P, Part 3

Previous articles have discussed fundamentals of the OSI C1P in regards to the polled keyboard and the expanded graphics set. This article shows how to put the pieces together.

In parts one and two of this series we discussed the C1P and some of its features. To be specific, the polled keyboard and the C1P expanded graphics set. An explanation of how to use the polled keyboard and graphics set in some programs written in Basic. The programs that were presented used only one of the many characters that are a part of the 256 characters available in the C1P character generator ROM. This time I would like to continue with the Large Numbers generation and lead up to the twelve hour clock that was promised last time.

Since this is to be a clock program, I will describe this section of the program first. It may seem rather odd to you that the clock mainline program is buried in the program, but this is how the program evolved. Primarily most of the number generating routines were developed first due to the past part of this series. This is not the best way to write a program, but some programs do evolve in this manner.

The clock mainline routine was a separate program and this portion will be described as a single unit that can be used without the large graphic characters for some of the users that do not have the amount of memory required for the whole program. The clock with the numerals is extremely long. It occupies nearly eight K of user memory. For those users that do not have enough memory to run the entire program I hope that you will use the number generating routines in some of your own programs that would require such things as hit scores or other number displays.

Some beginning criteria for a clock must be given at this point. Any clock that has a digital display must have a number set. The number set must have at least a minimum of four digits of display to qualify as a working clock. Also the hours and minutes must be separate entries. That is, we must have a means of separating the hours and minutes. In addition, we must also have a method of setting the clock to the right time before starting the clock. Finally, we must update the time at some interval. This is usually at one-minute or one-second intervals. The clock should also have a period of day indicator, such as AM or PM.

With this in mind, lets examine the clock portion of our main line Basic program routine that is located at Lines 4000 through 4070. This part of the program will be described in detail and the modifications that are required to make it independent from the rest of the program will be given. Looking at the beginning of Line 4000 we see that a GOSUB is executed. The subroutine at line 2900 through 3030 is the fast screen erase machine code memory load routine. This machine code routine will be called to clear the screen for every update of the display. The subroutine is used with both versions of the clock. An explanation of the subroutine was given in part two of this series and the reader is referred to this part for a complete description (MICRO 19:61).

When the program returns from the fast screen routine, the clock must be set

William L. Taylor 246 Flora Road
Leavittsburg, OH 44430

has been reached. If 60 minutes has not been reached as compared at line 4016, then a new pass through the program is executed. If 60 minutes has been reached ($R=60$), then the hours counter will be incremented (variable S). Next, at line 4018 a GOSUB to line 4032 will reset the minute counter and the screen is cleared. A new pass through the look-up table is executed and a new time update is displayed on the monitor screen. At line 4019, the S variable or hours is checked to see if 13 hours has elapsed. We must display 12 hours and 59 minutes. If the S . variable does not equal 13, a new pass through the program is executed. If the variable S is equal to 13 or full hours counter, a GOSUB to line 4034 will cause the Z variable to be reset. At line 4035, the R. variable is reset to zero. At line 4036, the hours counter (S variable) is reset and a GOSUB to line 4059 will clear the monitor screen. The display is updated to 1:00 o'clock and a new pass through the program is executed at line 4037. What all this says is that for each minute that the clock runs, there will be a correct time displayed. For every minute, there will be a new time-up date.

As stated before, the clock routine can be used independent of the whole program. The reader can use this explanation of the routine and the separate program in Listing 2 as a separate program. This listing differs from the routine just described in that is uses a PRINT statement to give the user a viewable readout. Also, this program will update the time every second. If you do not have sufficient memory for the complete numerical clock, please try the smaller version on your C1P.

In the last part of this series we discussed how the large numerals were generated. In fact, some of the large numeral routines are included in this article. At this point, we will continue with the graphics generation and discuss how these subroutines are used in the program for our clock. The contents of Table 1 lists the line numbers of the key subroutines begin. The reason that we tabulate these subroutines instead of identifying them in the Basic program is the fact that the Rem statements will occupy memory, and we need to conserve in order to fit the program in 8 K of user memory.

Included with this article is a C1P video memory map that shows the complete video memory as related to the monitor screen. This memory map is in decimal. The locations for the large numbers are shown. These digits will appear at these locations on the monitor screen. With this chart and the number subroutines in the program, you can write programs of your own that require any number displays.

Table 1: Numerical Clock routines

Line
60 to 385 Numerical look up tables

1000 to 1020 Least significant digit	One
1100 to 1190 Least significant digit	Two
1200 to 1280 Least significant digit	Three
1300 to 1360 Least significant digit	Four
1400 to 1460 Least significant digit	Fi ve
1500 to 1570 Least significant digit	Six
1600 to 1640 Least significant digit	Seven
1700 to 1760 Least significant digit	Eight
1800 to 1890 Least significant digit	Nine
2000 to 2070 Least significant digit	Zero
2900 to 3030 Fat screen ML load routine	
4000 to 4070 Clock main line program	
5000 to 5080 Second most digit	Zero
5100 to 5120 Second most digit	One
5200 to 5230 Second most digit	Two
5300 to 5340 Second most digit	Three
5400 to 5425 Second most digit	Four
5500 to 5535 Second most digit	Five
5600 to 5635 Second most digit	Six
5700 to 5710 Colon separator for hours and minutes	
6000 to 6025 Third most digit	Zero
6100 to 6130 Third most digit	One
6200 to 6235 Third most digit	Two
6300 to 6335 Third most digit	Three
6400 to 6430 Third most digit	Four
6500 to 6535 Third most digit	Five
6600 to 6645 Third most digit	Six
6700 to 6720 Third most digit	Seven
6800 to 6835 Third most digit	Eight
6900 to 6935 Third most digit	Nine
7000 to 7010 Most Significant digit	One

Table 2: Alarm option program changes

```
\(2 X=63232\)
3 POKE \(X+1,0\) : POKE \(X+3,0\) : POKE \(X, 255\) : POKE \(x+2,0\)
4 POKE X \(+1,4\) : POKE X \(+3,4\)
5 POKE X,0
6 GOSUB 4000
4003 INPUT ' 'SET ALARM' ' ; B, C: \(\mathrm{D}=\mathrm{C}+2\)
4010 NEXT I
\(4011 \mathrm{Z}=\mathrm{Z}+1\) : GOSUB 8007
4063 GOSUB 8005
8000 REM ALARM TEST
8005 IF \(B=S\) AND C=R THEN POKE \(X, 1\)
8006 RETURN
8007 REM TURN OFF ALARM PRESS 1 KEY
\(8008 \mathrm{G}=57088\)
8009 POKE 530,1
8010 POKE G, 127
8015 IF PEEK (G) \(=127\) THEN POKE X, 0
8020 POKE 530,0
8025 RETURN
```

It must be explained at this point that there are subroutines that generate the Least Significant Digits 0 through 9; the Second Most Digits 0 through 6; the Third Most Digits 0 through 9, and finally, the Most Significant Digit 1. The combination of these subroutines together will generate a display of the time. As an example, say the time 12:30 was contained in the S and R variables, we would need to generate digits for four characters. These would be the Most Significant digit one; the Third Most digit two; the Second Most Digit three; and finally, the Least Significant Digit zero. If the variable S contained 12 and the variable R contained 30 , when the program goes through to look up tables, variable R would be compared to 30 . When 30 was found at Line 215, a GOSUB to Lines 2000 and 5300 would result in the generation of a Second Most digit 3 and a Least Significant digit 0 to be displayed on the screen. Also, when the value for the variable S is found in the look-up table at Line 385, a GOSUB to Lines 6200 and 7000 will cause the generation and display of the Most Significant digit 1 and the Third Most digit 2 . From the example, it can be seen that when we are generating a digit display there are usually more than one of the subroutines used to create the graphics.

In the last part of this series, I explained how one example subroutine worked to generate a large number graphic display. The demonstration program in the last part of this series contained subroutines to generate the Least Significant Digits that are a part of this article. Although I described one subroutine in the last part, I will give a description of how one of the subroutines works in this article. The reader may not have the last issue that contained the article, so a description of the number subroutines will make this article a complete entry.

Lets take one subroutine that is used to generate the large numerals and briefly describe its operation. Take the graphics character that represents the numeral 1 in the Least Significant digit location. This subroutine is located at Line 1000 through 1020. First, we must define the locations on our C1P monitor screen that we wish to start to place our character. In the subroutine we are using, the variable A as the video memory pointer. You can see that variable A was defined as video memory locations 54000 to 54128 decimal. This sets up our boundaries in video memory where we wish to place our character. This statement forms part of a FOR-NEXT loop that will be used to load the character that creates the display on the monitor screen. Also note in the statement at Line 1000 we have used a function called the STEP function. This function in a statement will cause the variable to be incremented by the amount contains
ed in the STEP value. In this instance we wish to increment the A variable by 32 for each pass through the loop in the statement line. At the next statement line, the decimal equivalent of a white square will be placed at decimal location 54000 . This will be the first part of the data in video RAM that will make up our number character. At the next statement line the program returns to the first line where our FOR-NEXT loop began.

The A variable will be incremented by 32 , and the program will fall through the loop again. At the next statement line another square will be placed in video RAM and displayed on the monitor screen. This process will continue until the A variable has been incremented to the final value set in line 1000. This is 54128 decimal. We will now have the graphics representation of the numeral 1 displayed on the monitor screen. With this explanation of the subroutine for the graphics figure 1 , you should be able to analyze the remainder of the subroutines to understand them more clearly.

I have written the program to display the large numerals near the bottom left corner of the C1P's monitor screen. If the user should wish these characters displayed at a different location, they can be relocated. This is not a simple task but can be done with the aid of the video memory map that is included as part of this article. From the memory map determine the locations where you wish to have the characters displayed and change the decimal addresses to correspond to the new locations. If you are going to use the number routines for other programs, this may be necessary; but with the clock program as written, remember that the fast screen erase routine will clear only the bottom half of the monitor screen. If you relocate the graphics characters, you will need to have your fast screen erase routine clear the location where you have located your display.

This program is written in subroutines as stated before. In addition to the separate clock and subroutines for the numbers, the fast screen erase routine can be used in other programs that may require this feature. This could be for a rapid screen erase for animated games. The subroutines have many usages even if you cannot run the entire program on your machine.

Basically, this article was written for an OSI Challenger C1P; but the programs will run on other OSI computers with some changes. I have not included these changes in this article because OSI systems are somewhat different. If you have BASIC, you can modify the program to suit your video output such as the 540 in the C2-4P. In addition, a separate listing for an alarm option is included for
those users who should have a PIA port in their Challengers. Please refer to Table 2 for the list of the program changes required for the alarm option. The user will need a tone device to implement this option. The alarm option uses a 6820 PIA located at F700 HEX. The A side of the port is used and PAO is the specific port.

When using either version of the clock, the user must set memory size to protect the machine code routine that is stored in user memory. When using the complete graphics and clock program, the user must set memory size to 8167 . When using the shortened version, set memory size to 3840 decimal. When using the clock for either version, the clock timing loop will have to be adjusted for your system to insure accuracy. The clock is tied to the Challenger Processor clock and differs depending on the program being used.

In conclusion, although the BASIC clock requires much memory and will not have the accuracy of a hundred dollar quartz watch, it can be a fine demonstrator. The primary purpose of this article was to describe the C1P's features and teach some programming techniques that could be used by the readers for other programs. This article and programs cover many of the features of BASIC and the Challenger C1P in general. I hope that I have helped some readers and users of the OSI C1P and other OSI systems to grasp a better understanding of BASIC and the graphics capabilities of these fine machines. In the next part of this series, I will show how to do some plotting and create some animated characters using BASIC. Until then, good luck!!

Classified Ads

ASTROsoft presents: Solar System Simulator: graphic display of planets orbiting Sun for any range of dates. Requires Applesoft 32 K , HIRES character generator in APPLE II contributing pages, Volume 3. Specify RAM or ROM Applesoft, mem. size, 1/O. Tape $\$ 15$. Disk $\$ 30$. Check or MO to:

William Judd
701 South 22nd Street
Omaha, NE 68102
Soon, Star Map, Life of Sun.
THE DESIGNER by Apple-Jack Hi-res Graphics with apple game paddles with single keystroke ease. Macro commands for lines, arcs, circles, elipses, areas, etc. SAVE/RECALL to disk. 32K/DISK/Applesoft ROM $\$ 24.95$. Ask your dealer, or write:

Jeff Johnson

12 Monterey Drive
Cherry Valley, MA 01611
白

 －－－ 0 世 $\frac{5}{\square}$

品
$10-5$ 거ㄴㅓㅜㄴ군

百 200 $\triangle \square 505: 60 ट 9$ g
市市市市市市市市

390 RETURH
1000 FOR $\mathrm{A}=54006$ TO 54123 STEF 32
1010 POKE A. $161:$ HEST A
102 EETURH
1100 FOF $A=54000$ TO 54002 STEF 1
1116 FOKE A. 161:NEXT A
1126 POKE 54034,161
1140 FOF $\mathrm{H}=54064$ TO 54666 STEF 1
1150 POKE F. 161:HENT A
1160 POKE 54696. 161
$117 \mathrm{FOR} \mathrm{A}=54123$ TO 54130 STEF 1
1186 FOKE A. 161:NENT A
1199 RETUFH
$1200 \mathrm{FOR} \mathrm{A}=540 \mathrm{GO}$ TO 54602 STEF 1
1216 POKE A. 161:NEXT A
1220 POKE 54034. 161
1230 FOR $\mathrm{A}=54064$ TO 54066 STEF 1
124 COKE F. $161: 1$ HEXT A
1250 FOKE 54698,161
1260 FOR $A=54126$ TO 54130 STEF 1
1270 FOKE A. $161:$ HENT A
1280 RETURH
$130 \mathrm{FOF} \mathrm{A}=54006$ TO 54064 STEF 32
1316 POKE A : 161: NEXT A
1329 FOP $A=54664$ TO 54666 STEF 1
1330 FOKE F, 161:NEXTA
1349 FOR $A=54062$ TO 54136 STEF 32
135G FOKE F. 161: HEXT A
1369 RETURH
$1400 \mathrm{FOFF}=540 \mathrm{TO} 540 \mathrm{TO} \mathrm{STEP} 1$
$140 \mathrm{FOFA}=540 \mathrm{CO}$ TO 54602 STEF 1
1416 POKE A. 161: HENT A
$1426 \mathrm{FOR} \mathrm{A}=54064$ TO 54066 STEF 1
1.425 POFE A. $161:$ HEXT A

1436 FOR $A=54128$ TO 54130 STEF 1
1446 FOKE A. 161: NEXT A
1450 FOKE 54032.161: FOKE 54698.161
1.460 RETURH

1506 FOR $\mathrm{A}=540 \mathrm{GOTOS} 4002$ STEF 1
1516 FOKE F, 161: NEKT A
$152 \mathrm{ETOR} \mathrm{A}=54064 \mathrm{TO} 54066 \mathrm{STEF} 1$
1536 FOKE F. 161: NE:T A
1546 FOR $\mathrm{A}=54128 \mathrm{TO} 54130$ STEF 1
1550 FOKE $A, 161: 1+N E X T H$
1560 POKE 54032,161: POKE 54996,161: FOKE 54698.161
157 ERETURH
1601 FOE $A=54006$ TO 54002 STEF 1
1616 FOKE F. 161: NEKT A
$1629 \mathrm{FOR} \mathrm{A}=54602$ TO 54130 STEF 32
1630 POKE A. $161:$ NENT A
164 EETURH
$170 \mathrm{FOR} \mathrm{A}=54069$ TO 54128 STEF 32
1719 FOKE F. 161 :HENT A
$1720 \mathrm{FGR} \mathrm{F}=54602$ TO 541305 TEF 32
17SE FOKE F. 161: NENT A
1749 FOP $\mathrm{A}=54901$ TO 54129 STEP 64
1750 FOKE A. 161: NEKT A
1760 RETURH
1806 FOF: $\mathrm{F}=540 \mathrm{TO}$ TO 54130 STEF 32
1810 POKE F. 161: HENT F
$1320 \mathrm{FOR} \mathrm{F}=54000 \mathrm{TO} 540 \mathrm{~S}$ STEF 1
1836 FOKE F, 161: NEXT A
$184 \mathrm{FOR} \mathrm{A}=54864$ TO 54666 STEF 1
1850 POKE F. 161: NEXT A
$1860 \mathrm{FOR} \mathrm{A}=54128 \mathrm{TO} 54130 \mathrm{STEF} 1$
1876 POKE F. 161: NENT H
1880 POKE S4032, 161
1896 RETURH
1900 FOF $\mathrm{A}=53998$ TO 54126 STEF 32
1916 POKE A. 161: NENT A
195 RETLIRN
2009 FOR $\mathrm{A}=546 \mathrm{G} 0 \mathrm{TO} 5402 \mathrm{STEF} 1$
2016 POKE A. 161:1HEXT A
2026 FOF $A=54660$ TO 54123 STEF 32
20SE FOKE A. 161: NEXT A
2049 FOF $\mathrm{A}=54602$ TO 54130 STEF 32
2050 FOKE A, 161:HEKT A
2069 FOKE 54129, 161
2076 RETURH
2906 FOE R=8168 TO 8191
292G REFD F:FOKE R,F:NEXT R
2925 RESTORE
2936 RETURH
उ009 DATA $169,32,160,4,162,0,157,0$
3010 DATA 210,232,208,250,236,240
उ620 DATA $31,136.208,244 \cdot 169.210$
30SE DATA $141,240,31,96$
4060 GOSUB 2906
4062 FRIHT" TIME HES SEC MIH"
4004 INFUT Ξ
$406 E$ INFUT RE
460 T IHFUT 2
$400 \mathrm{FOF} I=1$ TO 725
4016 HEST I
$4011 \quad Z=Z+1$
4012 IF $2<60$ THEH 4008
4013 IF $Z=60$ THEN $\mathrm{E}=\mathrm{R}+1$
4014 IF $Z=60$ THEN GOSUE 4036
4015 GOSUE 4059
4016 IF RくE日 THEH GOTO 400E
4017 IF $\mathrm{R}=\mathrm{EQ}$ THEN $\mathrm{S}=\mathrm{S}+1$
4015 IF R $=60$ THEN GOSUE 4632
4019 IF S<13 THEN 400 S
$402 \mathrm{IF} 5=13$ THEN 4034

```
40.6
    Z=E
40S1 RETURN
46% F=%:G015 4059
HGE RETURG
40,4}\vec{2}=
405 R=5
40E 5=1:GOSUB 4059
40ST GOTO 4GOE
HGS FOKE 11.2S2:FOKE 12,31
4554 GOTO 5
405 FOKE 11.2उ2:FCKE 12,31:%=USRC人%
4068 GOEUB 304
46% 50%1859
4GE:EFTUFN
40| FOF R=5S9G TO 53GSS STEF 1
```



```
G62G FOF F=54124 TO 54126 STEF 1
WGG FOKE F.161:HENT F
W4, FOE F=5SG6 TO 54124 STEF 32
WEG FOKE A.1E1"HENT F
GGG FOF H=5SG9E TO 54126 STEF 32
#OT POKE F.1E1:HENT A
EQGE FETUFH
504 FOF H=5GGS TO 54126 STEF 32
F11E FINE F.1S1:NEMT H
G12G RETUFH
ZQQ FOF H=53996 T0 5399S STEF 1
2E= PQKE F.151:HE%T H
W1日 FOF F=54124 TO 54126 STEF 1
W2:FCHE F. 1E1:トE%T H
#2g POKE S4G%2, 161:POKES4E30,161
GS FOF F=5406G TO 54662 STEF 1
#SFORE H. 1S1:HEXT A
524% FETUFM
ESOU FGR H=53996 TOSS998 STEF 1
SJ00 FOR A=53996 TOSS998 STEF 1
\GE FOFE F.161:HENT A
G1Q FOF A=5406Q TO 54GE2 STEF 1
E1E FOKE F.1E1:HENT A
G2G FOF F=54124 TO 54126 STEF 1
```



```
SSG FOKE S4ESG, 161:FOKE 54E94,161
=34G FETIIFH
54G FOF A=5S99G TO 54126 STEF 32
S4E= POFE F.161:HENT A
5410 FOF R=5S996 T0 540ES STEF S2
F415 FOKEF, 161:NENT F
F42G POKE 540E1, 1E1
54工FETUFH
550% FOF F=5B996 TO 5S998 STEF 1
SG5 FOKE F.1E1:VENT F
5 5 1 0 ~ F O F : ~ H = 5 4 1 2 4 ~ T O ~ 5 4 1 2 6 ~ S T E F ~ 1 ~
#SS FOKE F. 161:NEXT A
520 FOF F=5406g TO 54062 STEF 1
#5S FOKE F. IG1:NENT A
4031 RETURN
\(4032 \mathrm{R}=\mathrm{an} \mathrm{GOSUE} 4059\)
4 HES RETURN
\(4034 \mathrm{z}=\mathrm{a}\)
\(4055 \mathrm{E}=\mathrm{C}\)
4036 5＝1：G05UE 4059
403 F GOTO 4606
405 FOKE 11．232：FOKE 12，31
405 FOKE \(11,232:\) FOKE \(12,31: \%=U S R(\%)\)
\(4060^{605 U E} 300\)
\(406 . \operatorname{cosue} 59\)
46ES RETURH
Guder FOR A＝53996 TO 53908 STEF 1
GIE FOKE A．IGITHERT A
TH26 STEP 1
5046 FOR \(\mathrm{H}=5396\) TO 54124 STEF 32
EOSE FOKE F． 161 ：HERT A
5060 FOR F \(=5399\) TO 54126 STEF 32
garg poke fir 161：NERT A
GGGE RETURH
5100 FOE \(A=5399\) TO 54126 STEF 32
S110 FOKE A． 161 ：NEXT A
512 g RETURH
GECO FOR \(A=53996\) TO 53993 STEF 1 G2G FOKE F． \(161: 1\) HEKT A
5216 FOR F＝54124 TO 54126 STEF 1
E2t5 FOKE F． 161 HURT A
520 FOKE 54692，161：FOKE54636，161
S230 FOR A＝54060 TO 54662 STEF 1
SISS FOKE H．161：HERT A
5246 RETURH
5300 FOR \(A=53996\) T05s998 STEF 1
SJOU FOR A＝53996 TO53998 STEF 1
Sole A．I6IFTVE．\(A\)
```



```
SSCO FOR A \(=54124\) TO 54126 STEF 1
5325 POKE A， 161 ：HENT A
SSBE FOKE S4日Sa，161：FOKE 54094，161
5340 RETURH
5406 FOR A＝53996 TO 54126 STEF 32
5465 POKE Fi． 161 ：NEMT A
5410 FOR \(A=53996\) TO 54660 STEF 32
5415 POKEA， 161 ：HEMT A
5426 POKE 54061．161
5425 RETURN
5509 FOR A＝53996 TO 53998 STEF 1
5505 FOKE A． \(161: 1\) HETT A
\(5510 \mathrm{FOR} \mathrm{A}=54124\) TO 54126 STEF 1
5515 FOKE A． 161 HNEXT A
550 FOR A＝54060 TO 54662 STEF 1
5525 FOKE A． 161 ：HEMT A
```

S5S POKE 54023．1 61：POKE 54062． 161：POKE S4694， 161

$55 S$ RETURH

S60 FOR A＝53996 TO 53998 STEF 1
5605 POKE A． $161:$ HEMT A
S610 FOR A＝54060 TO 54662 STEF 1
5615 POKE F． $161: 1$ HEMT A
G6C FOR A＝54124 TO 54126 STEF 1
5625 FOKE A． 161 HERT F
5630 POKE 54692，161：POKES4094， 161：FOKE 54628． 161
565 RETURH
ST00 FOKE 54027，172：FOKE54691．172
5710 RETURH
G006 FOR $A=5399$ TO 54120 STEF 32
G9E FOKE F． 161 ：IUEMT A
G010 FOR A＝5394 TO 54122 STEF 32
6016 FOKE A．161：HEXT A
Cat FOKE 53993．161：FOKE 54121，161
6025 RETURN
6100 FOE $\mathrm{A}=53994$ TO 54122 STEF 32
6120 FOKE A．161：NEXT A
6130 RETURN
6200 FOR $\mathrm{A}=5392$ TO 53994
E205 POKE A． 161 ：HEXT A
6210 FOE $A=54056$ TO 54058
6215 FOKE A． 161 ：FUEMT A
E220 FOE A $=54129$ TO 54122
6225 POKE A． $161:$ NEKT A
E239 POKE S4026．161：POKE S4668．
161：FOKES4057， 161
G2SS RETURH
6300 FOR $\mathrm{A}=53992$ TO 53994
E305 FOKE A． 161 INERT A
6310 FOR F＝54056 TO 5405
6315 FOKE A，161：NEMT A
632 For $A=54120$ TO 54122
6325 POKE H．161：HEXT H
636 FOKE 54G26．161：POKE 54000． 161
GSE RETURH
6400 FOR $\mathrm{A}=5 \mathrm{~S} 94$ TO 54122 STEP $\mathbb{2}$
G405 POKE A． $161:$ NEST A
6410 FOR A $=54056$ TO 54056
6415 POKE F．161：HEMT A
6420 FOR $\mathrm{F}=5592$ TO 54056 STEP 32
6425 POKE F． 161 HENT A
6430 RETUFA
6500 FOR $\mathrm{H}=5 \mathrm{SO}$ To 5394
6505 FOKE A． 161 NEMT A
6516 FOR $\mathrm{A}=540 \mathrm{~S}$ TO 54058
6515 FOKE F． 161 HERT
6520 FOR $\mathrm{F}=54120$ TO 54122
E525 FOKE H．161：NEKT A
650 POKE S4624，161：FOKE 54000． 161

```
65SE EETUNH
6E00 FOR F=5ए92 TO 54120 STEF 32
G605 FOKE F.161:HEXT G
6610 FOR H=5092 T0 505%4
GE15 FOKE F.1EIMNET F
620 FOR F=54120 TO 54122
6625 PTKE H.,EInt&KT 月
6E39 FOR F=54056 T0 540E6
GES5 FOKE F.IEIutEOT H
6540 POKE 54000.151
6E45 remued
6700 FOR H=5SO52 TO 5SS%4
GTGS FOKE F.IEIUNEKT H
GT10 FOE H=USO4 TC 54L2 STEF 区2
6ק15 FOKE F.+G1:NEMT 月
6720 EETUE4
```



```
GEO5 FOKE G.1E1:NEMT G
6810 FOR =5%%2 TO 54N0 5TEP O2
6ELS FOKE F.1EN:NEMT F
G2OE FOKE 5SQQ3, 161:POKE S40SF.
161:FORE 54121,161
6S2S RETUFH
6500 FOR F=5594 TO 5412% 5TE O2
6005 FOKE D.161:MENT A
6940 FOE F=54056 TO 540SS
EaIS FOKE A.LENUENT G
692 FOR H=50% T0 50%4
6925 FOKE F.161"NENT F
69SO FOKE 54CZ4. 61
653 FOE G=54122 TO 54120 STEF - - 
6SS4 FOKE A.1E1 :NEKT A
69SE EETUF%
FOOQ FOR F=5W0ge TO 5411S STEP O2
FGOS FOKE F.IELNHEM G
FGIG RETUFH
```

C1P Memory Map in decimal 25×25 format

PEOPLE'S COMPUTER COMPANY 1263 El Camino Real, Box E, Menlo Park, California 94025

The MICRO Software Catalogue: XVII

Mike Rowe
P.O. Box 6502
Chelmsford, MA 01824

Name:	TXT/ED 2.0
System:	APPLE II
Memory:	32K RAM with ROM Ap- plesoft, or 48K RAM (disk) Applesoft
Language:	APPLE EOFT APS
Hardware:	Machine Language APPLE II, Disk II (A printer with Serial or Parallel In- terface is desirable)

Description: TXT/ED is a disk-based Word Processor and an APPLESOFT BASIC program editor. Major features of theTXT/ED 2.0 include: no confusing CONTROL characters within your text, full right margin justification, merging of multiple disk files, find or change any text sequence in text memory, fully supported upper and lower case letters, extensive Text Formatting capabilities (including text lines, page numbers, two column print format), full data display (including page scrolling), slow-list and stop-list display of text data, conversion of APPLESOFT programs to text form for editing, then reconversion back to run-time format, selective saving of all or part of text memory to disk, multiple Disk II fully supported, easy creation of APPLE DOS 'EXEC' files, up to nine Tab Stops may be set for columnar data, line or paragraph block move, duplicate and center. Easy interfacing to any type printer.

Copies:	Just Released Price: \$65.00 on disk
Includes:	System disk, 51 page in- struction manual
Author:	Gerald H. Rivers
Available:	G.H. Rivers
	P.O. Box 833
	Madison Heights, MI
	48071

Name:	ISAM-DS		
System:	APPLE II		
Memory:	3 K plus index table		
	storage		Author:
Language:	Applesoft		Available:

Description: ISAM-DS is an integrated set of fifteen utility routines that facilitate the creation and manipulation of indexed files. Records on indexed files may be easily and quickly retrieved, either directly (randomly) or in sequence. Each record is identified by a key data value. The key values do not have to be part of the record; they do not have to be unique to each record; and partial key values may be used in retrieving records. The interface between ISAM-DS and an Applesoft program is through a single entry point (GOSUB) and nine variables. Files can be created, opened, closed, copied, and erased. Records can be written, read, changed, and deleted. File space that is freed by deleting a record is automatically reused when another record is added. There is never a need to "clean up" a file because of update activity. ISAM-DS is a must for writing business systems for the APPLE II and is equally useful in personal programs or for learning indexsequential file processing techniques.

Copies:	Just Released
Price:	$\$ 50.00$ (Texas residents
	add 5 percent sales tax.)

Includes: Integrated set of routines, documentation for the routines, and a sophisticated mailing list program that demonstrates ISAM-DS capabilities. Append routines for DOS 3.1 and 3.2 are also included. The
append routines are used to join the ISAM-DS package to an Applesoft program.

Robert F. Zant

Decision Systems
P.O. Box 13006

Denton, TX 76203
Name:
System: Memory:

Language:
Hardware:

COMMODITY FILE APPLE II Computer 2 K with Applesoft ROM 48K with Applesoft RAM APPLESOFT II Disk II, 132 column printer (optional)

Description: Commodity File stores and retrieves virtually every commodity traded on all Future's exchanges. A selfprompting program allowing the user to enter short/long contracts. Computes gross and net profits/losses, and maintains a running cash balance. Takes into account any amending of cash balances such as new deposits or withdrawals from the account. Instantaneous readouts (CRT or printer) of contracts on file, cash balances, P/L statement. Includes color bar graphs depicting cumulative and individual transactions. Also includes routine to proofread contracts before filing.

Copies:	60plus
Price:	\$19.95 Diskette plus \$1.95 P\&H, First Class,
	Check or money order.
Includes:	System diskette and full documentation.
Author:	S. Goldstein
Available:	Mind Machine, Inc.
	31 Woodhollow Lane
	Huntington, N.Y. 11743

Copyrighted: $3 / 1 / 79$, all rights reserved.

Name:	Astronomy Software
System:	PET
Memory:	$8 K$
Language:	BASIC

Name:	TRAP65
System:	Any 6502 based microcom- puter
Memory:	Not applicable
Language:	Not applicable

Description: TRAP65 is a hardware device which plugs into the 6502 microprocessor's socket. TRAP65 monitors each opcode that the 6502 executes; and if an unimplemented opcode is about to be executed, a BRK instruction is forced on the data bus. This prevents system crashes especially when debugging machine language programs. TRAP65 can also be used to extend the 6502 instruction set. For example, $O F$ is an unimplemented opcode that can, via appropriate routine, become a PHX (push X) instruction or any function that you can define in software.

Copies: Just released.
Price: $\quad \$ 149.95$
Authors: J. R. Hall and C. W. Moser
Available: Eastern House Software 3239 Linda Drive
Winston-Salem, N.C. 27106

Name: Applesoft Tape Verifier
System: Apple II or Apple II Plus
Memory: 16K RAM
Language: Applesoft
Description: This program gives the Apple computer the capability of verifying Applesoft programs that have been saved out on tape. It does this without destroying the original program. The program will work with either the Apple II or the Apple II Plus computers and will also work with either RAM or ROM Applesoft.

Copies: Just released.
Price: $\quad \$ 20.00$
Available: Softsell Associates
2022 79th Street
Brooklyn, N.Y. 11214

Name:	Mailing List Database
System:	APPLE II
Memory:	48 K
Language:	Applesoft
Hardware:	Applesoft on ROM and at least one disk drive.

Description: This new, user oriented mailing list program introduces professional quality and speed to the processing of name and address files. Labels on printed lists can be readily produced at any time. Features include: single keystroke commands, convenient data entry, machine language searches, machine language sorts, flexible application and versatile output. Mailing List Database is supplied on disk and comes with a program for automatically converting existing text mailing list files. It requires 48 K Apple II with Applesoft on Rom (or language card) and at least one disk drive.

Copies:	Many s 34.50 (WA residents add 5.3 Price:
percent sales tax).	
Authors:	Robert C. Clardy and Christopher Anson
Available:	Synergistic Software S221-120th Avenue, S.E. Bellevue, WA 98006
Name:	Typesetter
System:	APPLE II OR APPLE II
	Plus
Memory:	32K
Language:	Applesoft II and Machine
Hardware:	Disk II

Description: The Typesetter is a complete HIRES character generating and editing system. It features foreground and background colors, upper/lower case, inverse video, rotated characters, and foreign characters sets (including Greek, Hebrew, and PET graphics). Characters may be positioned anywhere on the screen, eliminating the usual 40X24 grid. The output is through regular print statements. Scale, color, and other functions are implemented using standard Applesoft II commands. Use it to label graphs, create ad displays, or print lower case or foreign languages. A character set editing program is included. Character tables are compatible with Apple's character generator on user contributed Volume 3. The system includes 35 utility programs and character sets plus manual.

> Copies:

Price:

Authors:
Available:

30

\$24.95on diskette. Please specify disk or ROM Applesoft. N.C. residents add 4 percent sales tax. Jeff Schmoyer and Joe Budge ANDROMEDA COM. PUTER SYSTEMS P.O.Box 19144 Greensboro, N.C. 27410 (919) 852-1482

Name:	Morse Code Transceive Pro- gram
System:	Ohio Scientific C1-P and Superboard 2
Memory:	Standard 4K
Language:Machine Language and Basic	
Hardware:Decoded Port Required (schematic supplied)	

Description: The program is designed for the HAM that wants a truly useful morse code program. It will copy CW up to 60 WPM. The copy program tracks the incoming code speed and, therefore, the user needs only to set the transmit speed. The program comes up in receive mode and is ready to copy. To go to transmit mode, simply press the spacebar. A cursor will now appear in the upper left hand corner of the screen. This is the position of the character that is presently being sent. As characters are entered from the keyboard they will be displayed across the screen. After each character is sent, the display is updated by a fast machine language routine which moves all the characters over one position. While in transmit mode, the following keys have special meaning: ; (semicolon) returns to receive mode :(colon) program will ask for a change in code speed.
RUBOUT key will backspace cursor in order to easily make corrections.
\(\left.\left.$$
\begin{array}{ll}\text { Price: } & \begin{array}{l}\text { \$14.95 prepaid, M/C and } \\
\text { VISA accepted }\end{array} \\
\text { Includes: } & \begin{array}{l}\text { Program on cassette, } \\
\text { loading instructions, }\end{array}
$$

\& operating instructions,

detailed instructions and

schematic for building re-\end{array}\right\} $$
\begin{array}{ll}\text { quired port. }\end{array}
$$\right\}\)| Author: | Steve Olensky, WB4DCL |
| :--- | :--- |
| Available: | Olensky Bros., Inc. |
| | Computer Sales Division |
| | 3763 Airport BIvd. |
| Mobile, AL 36608 | |

Software Catalog Note

Do you have a software package you want publicized? Our Software Catalogue is a good opportunity to receive some free advertisement. This regular feature of MICRO is provided both as a service to our readers and as a service to the 6502 industry which is working hard to develop new and better software products for the 6502 based system. There is no charge for listings in this catalog. All that is required is that material for the listing be submitted in the listing format. All info should be included. We reserve the right to edit and/or reject any submission. Some of the submissions are too long. We might not edit the description the same way you would, so please, be brief and specific.

STOCK MARKET ANALYSIS PROGRAM DJI WEEKLY AVERAGE 1897-1980

ANA1 (ANALYSIS 1) is a set of BASIC Programs which enables the user to perform analyses on the Dow Jones Industrial weekly average data. From 6 months to 5 years of user selected DJI data can be plotted on the entire screen in one of 5 colors using Apples' High Resolution capabilities. The DJI data can be transformed into different colored graphic representations called transforms. They are: user specified moving averages; a least squares linear fit (best straight line): filters for time, magnitude, or percentage changes; and user created relationships between the DJI data, a transform, or a constant using $+, ., \mathrm{x}, /$ operators. Colored lines can be drawn between graphic points. Graphic data values or their dates of occurrence can be displayed in text on the screen. Any graph or text can be outputted to a users printer. The Grid Scale is automatically set to the range of the graphs or can be user changed. As many colored graphs as wanted can be plotted on the screen and cleared at any time. The user can code routines to operate on the DJI/transform data or create his own disk file data routines to operate on the Diltransform data or create his own disk file data
base. ANA1 commands can be used with his routines or data base. An Update program allows the user to easily update the DJI file with current DJI weekly data.
The ANA1 two letter user commands are: CA = Calculate, no graph. CG $=$ Clear Graphs, leave Grids. $\mathrm{CK}=$ Checking out program, known data. $\mathrm{CO}=$ Color of next graph (red, green, violet, white, blue). CS = Clear Screen. DL = Draw Line between points. $\mathrm{FI}=$ Filter data for time, magnitude, or percent change. $\mathrm{FU}=\mathrm{Data}$, transpoints. $\mathrm{FI}=$ Filter data for time, magnitude, or percent change. FU $=$ Data, trans-
form, or constant Function with $+\cdots, \mathrm{x}, /$ operator, $\mathrm{GD}=\mathrm{Graphic}$ mode, display all Graph Data on screen. GR = Graph data to screen. GS = Set Grid Scale. HE = Help. summary of any commands usage. LD = Load Data from disk file from inputted date to memory. LG = Leave Graphs, automatic Grid rescaling. $\mathrm{L} 0=$ Look, select a range of the LD data and GR; All commands can now be used on this range, LS = Least squares linear fit of the data. MA $=$ Moving Average of the data. NS $=$ No Scale, next graph on screen does not use Grid Scale. NT = No Trace. PR = User implimented Printer routine. TD = Text mode, display Text Data on screen. $\mathrm{T} /=$ Time number to date or vice versa. TR = Trace. TS = Text Stop for number of lines outputted to screen when in TD. U1/U2 $=$ User $1 / 2$ implimented routines. $V D=$ Values of Data outputted in text. VG = Values of Grid; low/high/delta. VT = Values of Transform outputted in text.

APPLE ${ }^{-1}$ II, 48 K, APPLESOFT
ROM CARD, DISK II DOS 3.2
ANA1 DISK \& MANUAL . . . $\$ 49.95$
(CA residents add 6\% sales tax)

GALAXY
DEPT. MII
P.O. BOX 22072

SAN DIEGO, GA 92122

AT LAST!
A magazine devoted to Applications as well as Technique for the Apple Computer
THE APPLE SHOPPE WILL TEACH YOU HOW TO DO ALL THOSE FANCY THINGS ON THE APPLE. LEARN HOW OTHERS ARE USING THEIR APPLES IN THE HOME, SCHOOLS AND BUSINESSES.

CHECK THESE FEATURES:
Feature Articles on Apple Applications
Program of the Month-'How To' with Listings
New Products Review-All Boards, Pascal, etc.
New Products Review-All Boards, Pascal, etc.
Language Lab-Learn Basic, Pascal, Forth, Lisp, Pilot Future Projects - Participate in a new program design called "The China Syndrome"
Graphics Workshop-Learn secrets formerly known only
\square YES I want to learn how to get the most out of my Apple. Send me a one year subscription. I enclose \$12.
NAME:
ADDRESS:
CITY_____________________ \square NO, I already know it all, but send me a free sample of next issue. Send check or money order to: Apple Shoppe, P.O. Box 701, Placentia, CA 92670 or call (714) 996-0441

STONEWARE for APPLE II *

For the Serious Business or Home User: MICROMEMO

MICRO MEMO is the first sophisticated "Desk Calendar" program to make good use of your computer's power.

* Micro Merno includes one time, weekly, monthly, semi-annual and annual reminders.
* Monthly reminders may be for fixed or "floating" dates lex. 1st Saturday of every month).
* Each reminder allows choice of one week, 2 week or 1 month advance notice-reminds you ahead of time to prepare for meetings. purchase tickets, make reservations, etc.
* Micro Memo includes "shorthand" for fast memo entry. greater capacity.
* Micro Memo will display or print any day's or week's reminders.
* Micro Memo is a "perpetual" calendar-automatically creates new months with all appropriate memos (birthdays, anniversaries, monthly meetings, etc.) as past months are dropped-system holds full year's reminders on one disk.
* Micro Memo "knows" most major holidays.
* Supports Mountain Hardware clock (optional).
* "Bomb Proof" menu driven command and data entry.
* Requires 48K. disk. RAM or ROM Applesoft.

STONEWARE

Microcomputer Software
P.O. Box 7218, Berkeley, CA 94707
(415) 548-3763

And Just for Fun: TRANQUILITY BASE

TRANQUILITY BASE is a fast high resolution Lunar Lander game by Bill Budge. creator of Apple's "Penny Arcade" TRANGUILITY BASE is just like the popular arcade game, including multiple moonscapes, craft rotation, and zoom in for a close-up view as you approach the Lunar surface.

TRANQUILITY BASE requires 32 K and disk
Available at your favorite computar stare or diract from STONEWARE fadd $\$ 2$ shipping $\&$ handling; Calif. residents add sales tax. Visa \& MasterCharge shipping socepted, no C.O.D.'s).

DEALER INQUIRIES INVITED
\%Apple Il is a Trademark of Apple Computer. Inc.

Bringing Music Home

LET MICRO MUSIC TURN YOUR APPLE II INTO A FAMILY MUSIC CENTER!

. Sing along
. Compose
. Play
. Learn from Specialists

VISIT THE APPLE DEALER NEAREST YOU AND ASK FOR A DEMONSTRATION OF MMI'S MUSIC COMPOSER ${ }^{\text {TM }}$
The MUSIC COMPOSER is an APPLE $1{ }^{(B)}$ compatibile, low-cost music system designed by the folks at MMI. Our music software was designed by leading experts in music education. A simple step-by-step instruction manual leads you through entering, displaying, editing, and playing music with up to four voices-soprano, alto, tenor, and bass. You can change the sound of each voice to reed, brass, string, or organ sounds and you can even color your own music sounds!

HAVE FUNI THE MUSIC COMPOSER comes complete with an instruction manual, software disk or cassette-in either Integer or Applesoft ROM BASIC, and the MICRO MUSIC DAC music card. Just plug the MICRO MUSIC DAC into the APPLE extension slot and connect the audio cable to a speaker.

Suggested retail price $\mathbf{\$ 2 2 0}$.
Ask your local dealer for information on MMI music software products, or contact:

Micro Music inc
(309) 452.6991

309 Beaufort, University Plaza, Normal, IL 61761

PET Word Processor

This program permits composing and printing letters, flyers, advertisements, manuscripts, etc., using the COMMODORE PET and a printer.

Printing directives include line length, line spacing, left margin, centering and skip. Edit commands allow you to insert lines, delete lines, move lines and paragraphs, change strings, save files onto and load files from cassette (can be modified for disk), move up, move down, print and type.

Added features for the $16 / 32 \mathrm{~K}$ version include string search for editing, keyboard entry during printing for letter salutations, justification, multiple printing and more.
A thirty page instruction manual is included.
The CmC Word Processor Program for the 8K PET is $\$ 29.50$. The $16 / 32 \mathrm{~K}$ version is $\$ 39.50$.

Order direct or contact your local computer store.
VISA AND M/C ACCEPTED - SEND ACCOUNT NUMBER, EXPIRATION DATE AND SIGN ORDER. ADD \$1 PER ORDER FOR SHIPPING \& HANDLING - FOREIGN ORDERS ADD 10\% FOR AIR POSTAGE

CONNECTICUT microCOMPUTER,Inc. 150 POCONO ROAD
BROOKFIELD, CONNECTICUT 06804
TEL: (203) 775-9659 TWX: 710.456.0052

INEXPENSIVE CONTROL SOLUTION FOR
HOME SECURITY . ENERGY CONSERVATION GREENHOUSES • ENVIRONMENTAL CONTROL INDUSTRIAL CONTROL • LABORATORIES

CmC's μ DAC system now includes an interface to the BSR X-10 remote control modules. These low-cost modules allow control over lamps, motors and appliances. With the CmC X-10 interface your computer can control 256 separate devices. Lamps can be turned on or off, dimmed or brightened. Alarms, kitchen appliances, hi-fis, TVs, motors, pumps, heaters and more can be put under your computer's control.

Direct plug-in and software for most computers.
Circle the reader service number, call or write for our latest catalog.

\square
 $\triangle 50$
 BROOKFIELD, CONNECTICUT 06804 TEL: (203) 775-9659 TWX: 710.456.0052

6502 Bibliography: Part XVII

Dr. William R. Dial
438 Roslyn Avenue
Akron, OH 44320

528. MICRO No. 14, July 1979.

Smola, Paul, "SYM and AIM Memory Expansion." pg. 30. An easy hardware modification makes MEMORY PLUS a natural for RAMming more data into the SYM and AIM.
Vrtis, Nicholas, "The First Book of KIM—on a SYM", pg. 35-37.

How to modify the programs in this source for the SUM.
Hill, Alan G., "Ampersort," pg. 39-52.
A fast machine language sort utility for the Apple II.
Taylor, William L., "OSI Fast Screen Erase Under BASIC," pg. 53.

This short machine code program fills a need for a fast erase.
Rowe, Mike (Staff), "The Micro Software Catalog: X " pg. 54-56.

Fourteen more 6502 software offerings.
Biles, Noel G., "To Tape or Not to Tape: What is the Question?', pg. 57-59.

Use your scope to examine and diagnose your VIM cassette interface.
Dial, Dr. William R., "6502 Bibliography: Part XI," pg. 61-62. About 80 new references on the 6502.
529. Personal Computing 3 No. 8, August 1979).

Anon, NCC '79 Report,", pg. 34-36.
Report on the new Apple II Plus, Auto-Start ROM, Apple's Language system (Pascal, etc.), New Apple business software, Apple Graphics Tablet, etc.
530. The Apple Shoppe 1, No. 2 (July 1979)

Anon, "Language Lab," pg. 7-10.
Discussion of the Apple Languages: Basic, Applesoft Basic, Forth Pascal, Pilot, Lisp...Can Fortran and Cobol be far behind? Also how to set up a system to trace one's heritage.
Anon, "Graphics Workshop," pg. 10-12.
Beginning Lo-res and Hi-res graphics.
"Light Pen Applications," pg. 12-13.
Program for taking attendance records.
Anon, "Program of the Month," pg. 13,16. Program for drawing circuit diagrams.
Anon, "DOS 3.2," pg. 18-19.
Discussion of 3.2 and the new DOS Manual.
531. Southeastern Software Newsletter Iss. 11 (July 1979)

Carpenter, Chuck, "Assembly Language Primer," pg.2-3 Explains how a character is output.
McClelland, George, "SRCH Names File," pg. 4-5 Continuing his interesting series of utilities, the Editor discusses and gives a program for searching the file for names.

Ames, Dave, "Electric Typewriter," pg. 11-12.
A program to work with either the IP-125 or IP-225 printers and will allow you to output text in upper or lower cases.
532. ABACUS Newsletter 1, Iss. 7 (July 1979)

Anon, "Notes on DOS 3.2," pg. 1.
Several tidbits of useful information on DOS 3.2 including how to use the direct command open file.
Anon, "Auto Run Tapes," pg. 1. How to convert your tapes to Auto-run; very simple!!
Crossman, Craig, "Password,", pg. 2. How to put a password into your program. Also a siren program to sound on unauthorized attempted entry.
Ford, Bob, "Juggle," pg. 3-4. Keep as many balls in the air as possible.
Crossman, Craig, "The Hi-Res Corner," pg. 5. The first of a series of articles on Hi-Res Graphics.
Anon, "UPDATE," pg. 6-7. The Apple II Business System, the Apple II Plus, Apple's new repair program including diagnostic software and the Modular Parts Exchange Program, description of Apple II PASCAL, etc.
Crossman, Craig, "Program to Disguise your Copyright
Notice,"pg. 8.
A short program can be appended to your listing to protect it; and by disguising it, it is harder to wipe out.
Crossman, Craig, "Variable Speed Slow List," pg. 12. Slow list in any one of 9 selectable Apple speeds.
Anon. 'Bulletin Board Services," pg. 13-14. A most complete list of Apple Bulletin Boards and CBBS systems.
Freeman, Larry, "Two-Diamonds," pg. 15-15. A puzzle-type game for the Apple.
533. Creative Computing 5 No. 8.

Friedman, Sol, "A Printer for your PET—For Under \$300!"pg. 32-35. How to use the PR-40 with your PET.
Rhodes, Ned W., "Translating Two-Dimensional Arrays for Integer BASICs," pg. 106-108. How to add array capability to Apple's Integer Basic.
534. The Paper 2, Iss. 1 (February 1979)

Maier, Gary A., "What Really Makes Your PET Tick?", pg.1-6. A good tutorial on machine language of the 6502 and PET.
Busdiecker, Roy, "A Decoder Add-On to the MEMEXPLORER," pg. 12-13. Program allows examination of a block of 20 bytes of PET memory specified by the user.

Buxton, Robert, "Fast-Forward to Find Your Program," pg. 14.

DIRECTORY is a program to locate your program on tape.
Wind, Robert H., "Basic in ROM," pg. 16.
Tables listing the addresses where the PET BASIC routines reside.
535. The Paper 2, Iss. 2 (March 1979)

Barroll, Ken C., "Review of the Microtronics M-65," pg. 1. This unit plugs into two ports in the back of the PET and provides Send and Receive RTTY and Morse.
Busdieker, Roy, "Exploring Pet's Memory: A Real Program," pg. 3-5.

A tutorial on the PET memory and how a program is handled.
Greenup, Campbell Hugh, "How to Address the Screen with
These Three Statements-POKE 245, row: PRINT:POKE 266, column," pg. 7.

Explanation of a short PET routine.
Poirer, Rene, "Prevent 'Return Key' Fallout," pg. 10-11.
A fix to prevent dropping out of a program when the return key is accidentally pressed on the PET.
Swan, Warren D., "Change 'Change' (Alien Basic Keyword) to...,' pg. 11.

A discussion and explanation of the CHANGE command.
Busdiecker, Roy, "Watch your PET's Wait," pg. 22-23.
An explanation of the WAIT command on the PET.
Busdiecker, Roy, "The Case of the Trigonometric Bug," pg. 12-13.

Tracing down a bug on the PET.
536. The Paper 2, Iss. 3 (April 1979)

Simpson, Rick, "An Introduction to Assembly Language Programming," pg. 1, 4-6.

The microprocessor, the PET system, memory organization, ROM and RAM memory, etc.
Landereau, Terry L., "Animation," pg. 18. A short tutorial on animation.
Julich, Paul M., "Data Files Containing Strings," pg. 19. All about data files, PET style.
Landereau, Terry L., "Latest Update: Cassette Files," pg. 20-21.

A collection of tricks used to read and write data files reliably.
Landereau, Terry L., "Programming a Flashing Cursor," pg. 21.

Put a cursor in your program.
Busdiecker, Roy, "More About Extended Graphics," pg.

22-23.

How to put graphics on a strip of screen, vertical or horizontal.
Winograd, Fred C., "Application Notes 1 and 2," pg. 24-26. Two programs for Printers using the CmC ADA 1200 C Adapter.

537. The Paper 2 Iss. 4 (May 1979)

Swan, Warren, "Machine Language Routines for Fast Graphics," pg. 1, 4-10. Lots of goodies in this tutorial article on PET graphics.
Wachtel, Anselm, "Another Second Cassette Interface," pg. 14-17.
Add a second cassette to your PET.
538. The Paper 2 Iss. 5 (July 1979)

Simpson, Rick, "Introduction to Machine Language," pg. 3-5.

Continuation of this good tutorial.

Busdiecker, Roy, "The Number Game: An Introduction to Computer Arithmetic," pg. 7-8

All about how computers use numbers.
Lee, Arnie, "The OId PET, The New PET and the Blue Sky," pg. 20-25.
All about the new keyboard, the display screen, the cassette drive, the operating system, etc.
539. ABACUS 1, Iss. 1 (January 1979)

Tognazzini, Bruce, "Page by Page List," pg. 3. List your program page by page.
Anon, "Read and Write to Files," pg. 5. A program showing how to read and write to disk files.
Danielson, Larry, "Color Killer Mod," pg. 8. Add this simple mod to your earlier model Apple.

540. ABACUS 1, Iss 2 (February 1979)

Avelar Ed, "Important Addresses and Routines," "pg. 3-6. Reference chart comparing familiar BASIC commands with the machine language equivalents.
Aldrich, Darrell, "Free Space Program," pg. 11 A short program to show how much free space ramains on your Apple disk.

541. ABACUS, Iss 3 (March 1979)

Avelar, Ed, "Monitor Routines," pg. 5. Miscellaneous routines for the Apple.
Danielson, Larry, " 6 Color Modification," pg. 12. Convert your early serial number Apple II to six colors, in hi-res graphics.
Shank, Stephen, "Want a Faster Cursor?" pg. 14. Speed up the cursor or repeat key by a simple hardware mod.

542. ABACUS, Iss 4 (April 1979)

Anon, "Graphics Routines," pg. 2.
Several short programs that can be added to your programs for that extra enchancement.
Wilkerson, David, "Lower-Casing It on the Apple II," pg. 3-4. A software modification to print in lower case.
Danielson, Larry, "Lower Case Mod," pg. 4-5. Hardware method of getting your Apple to display Lower Case characters.
Wilkerson, Dave, "Dollars and Cents in Applesoft," pg. 6. Round off Applesoft to two decimal places.
Yee, Alan, "ASCII Output," pg. 7. Program outputs ASCII equivalent on request, on the Apple.

543. ABACUS 1, Iss 5 (May 1979).

Anon, "Special Text Output," pg. 3. Special routines using COUT on the Apple.
Anon, "The WAIT Routine," pg. 5.
All about the WAIT routine for the Apple.
Anon, "Printing Error Messages," pg. 6.
A list of printing error messages.
Anon, "Some Zero Page Explanations," pg. 6.
Tells what each byte in zero page does.
Anon, "Machine Language Program Development Aids," pg. 7.

Many routines in the Monitor can be helpful when developing machine language programs.
Anon, "Apple II Memory Map, Showing Areas Over-Written
When Booting DOS 3.1", pg. 8.
Another Memory Map.
Anon, "Color Graphics," pg. 11. Lo-Res graphics program for the Apple II.

Yee, Dave, "Alphabetizer," pg. 12. Input names and alphabetize with this program.
Anon, "The Eight Queens Problem," pg. 13.
The Apple searches a solution to put eight queens on a chess board.

544. Dr. Dobbs Journal 4, Iss 7, No. 37 (Aug. 1979)

Colburn, Don, "Those All-Important Extras," pg. 20-26. A memory display program based on a 6502/CGRS system with EXOS. Also a program written for a 650X Tim based system with the Per-Sci controller.
Bach, Stephen E., "Disassembler for Sym-1," pg. 45. Adaptation of the 6502 disassembler from Apple for the Sym-1.
545. Stems from the Apple 2, Iss 7. (July 1979)

Hoggatt, Ken, "Ken's Korner," pg. 2 How to put more than one DOS command on one line of the Apple, a handy list of zero page uses, a novel monitor routine, data and read statements in Applesoft, transparent machine language, etc.
Stein, Dick, "Numerical Sorting in Applesoft," pg. 5-6. This "QUICKSORT" method is faster than the "BUBBLE SORT."
Porter, Gale, "HEX-HEX-HEX," pg. 7.
Hex numbers are input as strings and output as decimals. Both Integer Basic and Applesoft routines are given.
Newman, Will II, "Text File Build, Store, Retrieve Example," pg. 8.
A tutorial program.
546. The Target (July/August 1979)

Sellars, George, "Statistical Analysis," pg. 2-3. Several program listings for the AIM 65 Basic are given.
Riley, Ron, "Basic Hints," pg. 11.
Some advice on using the AIM-65 Basic.
547. Personal Computing 3, No. 9 (Sept. 1979)

Irving, Steve and Arnold, Bill, "Measuring Readability of Text," pg. 34-36.

A PET program to analyze the readability ot Text.
548. Rainbow I, Iss 6. (July 1979)

Simpson, Rick, "Running the Volume 3 Hires Demo on a 32 K
Apple with DOS," pg. 1.
A simple fix for a problem with the Demo on Vol. 3 of the Contributed Library, for the Apple.
Watson, Allen, "Multiply and Divide Subroutines," pg. 2-3. Discussion of subroutines in the Apple Monitor.
Hirsch, John, "FORTH - or Backwards?", pg. 11-13. A discussion of this language available for Pet and Apple.
549. Byte 4, No. 8, (August 1979)

Anon, "Byte News," pg. 89.
Rockwell has introduced a bubble memory board for 128 kbytes of storage which plugs directly into the expansion bus for the AIM-6502 processor (same as for KIM-1), expandable to 16 such memory boards (2 Mbytes).
Appleseed, P.O. Box 68, Milford, NH 03055, pg. 199
Appleseed is a new magazine about to appear, devoted to Apple II software.
Information, Unlimited Software, 146 N. Broad St., Griffith, IN 46319, pg. 201.

EASYWRITER is a Word processor for the Apple II.
Kellerman, David, "Turn your KIM into a Metronome," pg. 213.

Short listing for an adjustable speed metronome.
Allen, Michael, 6025 Kimbark, Chicago, IL 60637, pg. 236.

550. Cider Press 2 No. 4 (August 1979)

Stone, Barney, "Apple Drops RAM Applesoft," pg. 5. Apple has quietly decided to drop the Ram versions of Applesoft Basic. They will concentrate on Rom Basic which is the version also used in RAM with the new Pascal/Language system. The current version of the ROM card includes the new Auto-Boot ROM.
Hertzfeld, Andy, "Fix Catalog," pg. 7-9.
The program Fix Catalog, sometimes called Fix Sector Count, corrects the sector count that is printed in the catalog on the Apple disk.
Anon, "Disk of the Month," pg. 2.
The August Disk of the Month includes utilities, games and graphics programs for the Apple II.
Kotowsk, Tom, "Metronome," pg. 9.
A short program for the Apple with speed adjustable with the game paddles.
Frankel, Jeff, "Program Conversion," pg. 9.
A program to change your Integer Basic program to Applesoft and vice-versa. For the Apple II.
Anon, "Memory Chart," pg. 10.
An easy to use memory chart for the Apple.
Silverman, Ken, "Applesoft Interpreter Set," pg. 11.
ROM addresses D000-F7FF giving subroutines entry points, for the Apple.
Slovick, Linda, "Apple Integer Basic," pg. 12. Token and Character set for the Apple Integer Basic.
Anon, "How to get 21 Hi -Res Color Without Any Hardware Mod," pg. 13.
A software program to give a lot of hires colors.
Anon, "Variable Delay After a Carriage Return," pg. 13. A program with a bug, submitted by Apple Computer.
Apple Computer, "Serial Card Handshake Mod," pg. 14. This is a modification to use the Data Input line as a CTS (clear to send) line.
Gannes, Howard; Silverman, Ken; Couch, John, "CHECKBOOK," pg. 15-17.

This program includes the many patches found necessary and published in many places; for the Apple.

551. KB Microcomputing, No 33 (September 1979)

Feldman, Phil and Rugg, Tom, "Happy Motoring!"
pg. 48- 50.
A program to keep track of fuel consumption, fuel economy, miles driven, etc. For the PET.
DeJong, Dr. Marvin L. "Catching Bugs with Lights," pg. 96-99.

A Hardware approach to debugging with LED monitors.
Downey, Dr. James M. "Make PET Hard Copy Easy," pg. 100-102.

Interfacing ASCII or Baudot Printers to PET's leee bus is a snap with this circuit.
Smith, Darrell G. "Apple II High-Resolution Graphics," pg. 104-106.

All about HiRes on the Apple.
Tulloch, Michael. "Put Your PET on the Bus." pg. 112-115.
With BETSI interface PET to the S-100 goodies.
Blalock, John M. "Another KIM-1 Expansion" pg 130-133. Packaging the Kim, adding a TTL serial interface, adding 24 K additional memory, etc.
552. MICRO. No 15 (August, 1979)

Bixby, Donald w. "Apple II Serial Output Made Simple" pg. 5-8.

Helpful hints on implementing Apple II serial output.
Vrtis, Nicholas. "Extending the SYM-1 Monitor," pg. 9-15. Adds a program relocator, a program listing utility and a trace function.

Morris, E.D.,Jr. "Replace that PIA with a VIA" pg. 17-18. If your board uses the 6520 PIA, try replacing it with a 6522 VIA to get all the functions of the 6520 plus two timers, a shift register, input data latching and a much more powerful interrupt system.
Smith, Ronald C. "PET Cassette I/O" pg. 19.
No more lost files, missing data, etc. with this improved I/O.
Morris, E.D.,Jr. "Tokens" pg. 20.
Discussion of PET Microsoft Basic Tokens.
Bradford, L. William. "A Better LIFE for Your Apple," pg. 22-24.

An enhancement for your LIFE program.
Clements, William C. "EPROM for the KIM" pg. 25-26.
An easy to build EPROM board requires no special interfacing.
Luebbert, Prof. William F. "What's Where in the Apple," pg.
29-36.
Luebbert's Apple Memory Atlas is very complete, giving the location and function of various Peeks, Pokes and Calls and other subroutines.
Rowe, Mike (Staff) "The MICRO Software Catalog: XI," pg. 38.

Reviews four important programs for 6502 based micro's.
DeJong, Dr. Marvin L. "Interfacing the Analog Devices 7570J A/D Converter," pg. 40-41.

Interfacing info together with a demonstration program. For the KIM or other 6502 boards.
Blalock, John M. "SYMple Memory Expansion,"pg. 42-43. A compact 8 K SYM by this hardware Mod.
Zant, Robert F. "Define HI-RES Characters for the Apple II," pg. 44-45.

A program to easily generate and modify Hi-Res characters on the Apple II.
Zant, Robert F. "Common Variables on the Apple II," pg. 47-49.

Two short routines emulate the Disk II DOS CHAIN capability by allowing the use of common variables under Integer or Applesoft Basic, without a disk.
Dial, William R. "6502 Bibliography: Part XII," pg. 53-55. Over 115 new references to the 6502 literature are added to the bibliography.

553. PET User Notes 1, Iss 7 (Nov/Dec 1978)

Butterfield, Jim, "Poor Man's D/A Converter," pg. 2 A simple D/A based on a group of resistors.
Church, Rick. "Star Sounds - CB2 Sound," pg. 3. Sounds for the PET.
Riley, Michael. "Two Player Games with One Keyboard," pg. 4.

Software for avoiding key lockout.
Bell, John. "GET String Routine," pg. 4.
This routine acts as a substitute for an INPUT statement.
Butterfield, Jim. "Verifying Tape Loads," pg. 4-5.
Simple verify routine.
Russo, Jim and Chow, Henry. "M7171 Monitor and Merge in
High Memory," pg. 6.7.
Routine for the PET.
Russo, Jim and Chow, Henry. "D63777-R63888 (Delete and
Resequence)," pg. 7.
A modified routine with line delete capability added.
Cooke, John A. "IEEE Bus Handshake Routine in Machine
Language," pg. 8-9.
A routine allowing data transfer speeds of over 5000 bytes per second.

Riley, Michael. "Getting Started in Machine Language," pg. 9.

A tutorial for the PET.
Russo, Jim and Chow, Henry. "Merger," pg. 10. A utility for the PET.
Seiler, Bill. "PET Renumber 3.0," pg. 12-14. A useful utility for the PET.
Martinez, Henry. "PET IEEE-488 to SWTPC PR40 Printer Interface," pg. 18.

Hardware for the printer interface.
Butterfield, Jim. "Memory Usage and Garbage Collection," pg. 18.

Tips on Memory Usage.
Riley, Michael. "Panic Button," pg. 21.
Short machine language routine to help regain control of the cursor.
Butterfield, Jim. "Arrow," pg. 24.
A game for the PET.

554. Call-Apple 2, No. 6. (July/August 1979)

Golding, Val J. "A HEX on Thee," pg. 4-6. A discussion of Binary, Hex and different number systems involved in the Apple II. Includes a HEX-DEC Converter Basic program.
Wagner, Roger. "A Fast GR Screen Clear," pg. 8. Clear the low resolution graphics page of the Apple very fast.
Aldrich, Darrell. "BADR.CREATE," pg. 8. A program for the Apple to give the start and length of a BLOADed file.
Aaronson, Tim and Hertzfeld, Andy. "Using Page 2 Text and
Lo-Res," pg. 13.
Routines for special effects on the Apple II.
Anon. "IMA-A new Computing Language," pg. 13.
IMA is a new language by Microversity which allows the use of Integer Basic, Machine Language and Applesoft in the same program.
Garson, David B. "Multiply Demo," pg. 19. Routine to show the use of the multiply function in the Apple's monitor.
Aldrich, Darrell. "Color Twentyone," pg. 21. Software approach to creating additional Hi-Res colors.
Golding, Val J. "Hidden Rem Formatter," pg. 21. Two programs for hidden rams.
Garson, David B. "Soul Searching with the Apple," pg. 22. A machine language program to go through memory looking for occurences of HEX or ASCII strings that the operator specifies. For the Apple.
Koftinoff, Jeff. "Bowling," pg. 24-25. A well arranged and documented listing for a game of bowling.
Aldrich, Darrell. "The Apple Doctor," pg. 26. How to verify a ROM in your computer. Also a discussion of the new AUTO-START ROM and how to put it on the Applesoft Firmware Card to achieve optional Autostart action. This way you retain the old ROM and the functions that would have been lost such as STEP, TRACE, etc., that are in the old monitor.
Thyng, Mike. "Applemash," pg. 28.
Discussion of a project to get an IMSAI and the Apple II to talk to each other.
Rivers, Jerry. "Amazing Mystery Program," pg. 30. A short program for the Apple.

Creative Computing can help you select the best computer and get the most out of it.

With so many new personal computers being announced and the prices coming down so rapidly, isn't the best bet to wait a year or so to buy a system?

We think not. A pundit once observed that there are three kinds of people in the world: 1) those who make things happen, 2) those who watch things happen and 3) those who wonder what happened. Today, it is those who are getting involved with microcomputers who are making things happen by learning to use computers effectively.

Furthermore, it is not likely that we will see the same dramatic price declines in future years that have already taken place. Rather, one will be able to get more capability for the same price.

The TI-99/4 has excellent color graphics and costs $\$ 1150$ including color TV monitor.

Which system is for you?

No two people have exactly the same needs. You'll have to determine what capabilities are important to you. Key variables include:

- Upper and lower case. Obviously vital if you are planning to do word processing or anything with text output.
- Graphics. Most systems have graphics but the resolution varies widely. How much do you really need?
- Color. Some systems are B\&W, some have 4 colors, others up to 256 colors. Many colors sounds nice, but do you really need 4 , or 16 , or more?
- Mass storage. The smaller systems are cassette based; larger systems offer floppy disks or even hard disks. What size data bases do you intend to use and is it important to have high-speed random access to an entire data base?
- Languages. Basic is standard but increasingly Pascal, Fortran, Cobol and special purpose languages are being offered.
- Audio, Speech, Music. Are these features important for your planned applications?
- Applications Software. Third party software is widely available for some systems, non-existent for others. Do you need this, or can you write your own?

Unbiased, in-depth evaluations.

At Creative Computing, we obtain new systems as soon as they are announced. We put them through their paces in our Software Center and also in the environment for which they are intended home, business, or school. We published the first in-depth evaluations of the Texas Instruments 99/4, Atari 800, TRS-80, Ohio Scientific Challenger, Exidy Sorcerer, Apple II disk system and Heath H-8. We intend to continue this type of coverage, not only of systems, but peripherals and software as well.

Sorting: A Key Technique

While evaluations are important, the main focus of Creative Computing magazine is computer applications of all kinds. Many of these require that data be retrieved or sorted. Unfortunately, most programming texts focus on the bubble sort (or straight insertion) and, very infrequently, another technique (usually delayed replacement) and let it go at that.

Yet, except for comparison counting, the bubble sort is the least efficient. Tutorials and articles in Creative Computing demonstrate that the Shell-Metzner and Heapsort are from 50 to 13,000 times as fast as the bubble sort! Consider a sort of 100,000 items on a DEC System 10:

Bubble sort	7.1 days
Delayed replacement	3.8 days
Heapsort	17.3 minutes
Shell-Metzner	15.0 minutes

Free Sorting and Shuffling Reprint

Because sorting and shuffling (mixing a list of items) is so vital in most programming, we are making available a 20-page reprint booklet on Sorting, Shuffling and File Structures along with our May 1979 issue which has several articles on writing user-oriented programs and making the most of available memory space. The reprint booklet and issue are free with 12 -issue or longer subscriptions.

At Creative Computing, we believe that computers can be of benefit to virtually every intelligent person in the

Free reprint booklet and issue with a new subscription to Creative Computing.

Contributing editor Ted Nelson (L) is author of "Computer Lib/Dream Machines." Publisher David AhI (R) is a pioneer in computer models, simulations and games.
country. We do not believe that the "Computer priesthood" should confuse and bully the public. As Ted Nelson stated in the Computer Lib Pledge, we do not treat any question as a dumb question, since there is no such thing. We are against computer terms or systems that are oppressive, insulting or unkind, and we are doing the best we can to improve or replace such terminology or systems. We are committed to doing all we can to further human understanding and make computers easy to understand, interactive wherever possible, and fun for the user. The complete Computer Lib Pledge is contained in our May 1979 issue which we are furnishing free to new subscribers.

Computer literacy to everyone

The Creative Computing Software Division is participating with Children's Television Workshop in an important new venture, Sesame Place. These theme parks are being designed to bring interactive computer games and simulations to young children (and their parents) and remove the mystique of computers from the youngest segment of our population. In addition, we are participating in projects with several school systems and museums to write reading comprehension and ecology simulations software. We are also involved in a major collegelevel computer literacy project.

As a subscriber to Creative Computing, you will benefit from all of these activities. Creative Computing is the Number 1 software and applications magazine. Subscribe today - 12 issues for $\$ 15$ ($\$ 9$ saving over the newsstand price). Or, beat inflation and get 36 issues for just $\$ 40$. Money back if you're not satisfied. Send payment or Visa, Master Charge or American Express number to:

Creative Computing, Attn: Joyce
P.O. Box $789-\mathrm{M}$

Morristown, NJ 07960
Save time, and call your order toll-free to: 800-631-8112
(In NJ call 201-540-0445)
creative computired

JOIN RAYGAMCO NOW!

Become a member of RAYGAMCO Computer Discount Club.

BIG SAVINGS ON EVERY ITEM!

By being a RAYGAMCO Member you receive substantial discounts on every item you purchase, including all hardware, software, accessories, even books and paper! You will also receive a monthly newsletter with all the latest available for your particular computer system, and much, much more - exclusive to RAYGAMCO Members only!

All the famous brand names, including:				
APPLE	Alpha Micro	Soroc	Lear Siegler	
ATARI	Alpha Pro	Hazeltine	Shugart	
EXIDY/Sorcerer	Cromemco	Sektor	Texas Instruments	
Kim/Commodore	Xerox	PET		

Here's how to join.

Fill out the information, and mail. That's all there is to it. Nothing to buy. I want to be a RAYGAMCO Computer Discount Club Member. Please send my RAYGAMCO Membership card to:

Name
Address \qquad
City State Zip \qquad
Computer (Brand Name)
I would like information on (please specify system, part, accessory, book, program, etc.)

WE HONOR VISA, MASTERCHARGE, BANKAMERICARD.
TOLL FREE, EXCEPT CA
Store Hours: Sat 10-6, Sun 12-4, Tu-Fri 11-8
800-854-6455

6791 WESTMINSTER AVENUE WESTMINSTER, CA 92683 TELEX 182274
(714) 891-2587

Star Affractions:

Abstract

WRITE-ON Professional Word Processing lets you edit, move, delete, find, change and repeat any body of text, merge and save on disk. Does rightjustified margins, centering, page numbering. You can enter name \& address into form letters when printing. Edit and merge any text disk file-even files not created by WRITE-ON-and spool text to disk for letter printing or editing. Chain files when printing for an infinite number of pages in a single printer run. Needs Applesoft and 32K. On Disk with operating manual $\$ 99.50$

FILEMASTER 2 programs: FORMAT \& RETRIEVAL comprise a powerful data file manager. Great for everything from phone lists to legal abstracts. Needs 32K. Design your own data structure. Up to 500 characters per record. Up to 15 searchable fields in any combination. On Disk.
\$34.95
SPACE Multi-faceted simulation of life in interstellar society. You and opponents must make life \& death decisions. Keeps track of your progress from one game to next. Needs 48 K and Applesoft ROM. Disk \$29.95
Pot O'Gold I or our All New Pot 0' Gold II A collection of 49 programs for 16 K Apple. Everything from Logic to action games. Only a buck a game. Specify I or II. Price each: Tape $\$ 49$ \qquad Disk \$54

ADVENTURE Fight off pirates and vicious dwarfs. 700 travel options, 140 locations, 64 objects. Needs ROM \& 48K. Disk. . $\$ 29.95$ 16 K CASSETTE IN VENTORY Use item number, description, stock amount, reorder amount, restock date, cost \& sell price. Holds up to 140 items. Tape \$35

32K DISK INVENTORY: Use stock numbers description, vendor, record of purchase and sales date, amount on hand, cost \& sell price, total value. Holds up to 300 items. Disk $\$ 40$ With Parts Explosion: Disk . \$50 32K DATA BASE Cross file for phone lists, bibliographies, recipes. Run up to 9 lines of 40 columns each. Search by item anywhere. Disk.\$20

24K HI-RES LIFE SIMULATION Conway's equations on 296x180 screen. A mathematical simulation to demo population growth with birth, death and survival as factors. Tape \$10
16 K CIRCUIT LOGIC DEVELOPMENT AID Evaluate circuits of up to 255 gates, including AND, OR, NOR, NAND, XOR, XNOR and INVERTER. Tape \$10 16K MORSE CODE TRAINER Learn Morse Code, and transmit or receive over radio. Tape \$10

16K PACIFICA: Discover the floating island and rescue the beautiful princess. To win you must recover the enchanted crown, but you face the threat of magic spells and demons. Tape
$\$ 9.95$
RAINBOW'S CASINO 9 gambling games: Roulette, Blackjack, Craps, Horserace, and a few originals that Vegas hasn't heard about. Needs 16K. Tape $\$ 29.95$
16K SPACE WAR: You in your space capsule battle against the computer's saucer . . . in hi-res graphics. Tape \$12
16K MEMORY VERIFY Diagnostic routine to check range of mem-ory. Indicates faulty addresses, data in memory cell, and faulty data.Tape\$5
16K APPLEODION Music synthesis composes original Irish jigs. Enter your own music and save on tape or disk. Includes 3 Bach fugues. Tape \$10
16K APPLEVISION Demo for Hi -Res graphics and music.
Tape \$10
32 K COMPU-READ 5 programs to teach you speed reading, instages. Includes synonym and antonym identification. You controlyour rate of speed, or keep up with the computer's pace.Disk.$\$ 24.95$
48K PERCEPTION I, II, III random shapes and sizes must bematched. In III, you control format and display time and getweighted scores. Needs ROM. Each Disk.\$24.95
24 K POLAR PLOT Plot polar equations in Hi -Res Graphics. Tape $\$ 10$
32 K SHAPE SCALER Utility to generate and animate Hi -Resgraphic shapes. Simple routine provided to inspect position ofshapes, and specify precise X/Y coordinates and scale. Needs ROM.
Disk. $\$ 13.95$
APPLE MONITOR PEELED Everything you wanted to know aboutthe Apple Monitor but couldn't figure out. User-written manual inplain English clears your confusion. Only$\$ 9.95$

Don't see what you've been looking for, here? Then write for our FREE SOFTWARE CATALOG. We're saving one just for you!

To order, add $\$ 2$ shipping. California residents add 6\% sales tax. Sorry, we can not ship to P.O. Boxes. VISA/ MASTERCHARGE and BANKAMERICARD Welcomed!

[^0]: $10 \mathrm{PT}=\mathrm{INT}(\mathrm{TL} / 2+.5): \mathrm{IV}=\mathrm{PT}$
 20 IF L1\$(PT) $=$ SW\$ THEN GOTO [found it]
 25 IF ABS (IV) $=1$ THEN GOTO 70
 $30 \mathrm{IV}=\mathrm{INT}((\operatorname{ABS}(\mathrm{IV})) / 2+.5)$
 40 IF L1\$(PT) SW THEN IV $=-$ IV
 $50 \mathrm{PT}=\mathrm{PT}+\mathrm{IV}$
 55 IF PT TL OR PT 1 THEN IV=-IV: PT=PT + IV
 60 GOTO 20
 70 IF SW $\$=\mathrm{L} 1 \$$ (TL) THEN PT=TL: GOTO [found it]

 80 REM Search has failed and you're out of the binary search algorithm.

