MICRO™
The Magazine of the APPLE, KIM, PET
and Other 6502 Systems

IN THE BEGINNING
WAS THE KIM-1

NO 11 April 1979 $1.50
16K APPLE II $1195.00
- We are Apple Headquarters. Buy from us and let us help you get the most from your Apple.
- Free software with purchase of Apple. Choose up to $100.00 worth of software from over 100 selections in our Apple software catalog.
- Our unique Apple II software catalog gives a short critique on each program so that you know what you are buying before you buy.
- We also have numerous selections of software free with any purchase.
- We offer service contracts for all equipment we sell.
- We provide demonstrations and orientation services for schools and businesses anywhere in Los Angeles or Orange Counties, California. Call for information regarding this free service.

8K COMMODORE PET $795.00
- FREE $50.00 worth of software of your choice with each pet.
- Software Over 50 programs now available and still growing. Send for our software catalog.
- In Stock Off the shelf deliveries
- Service We have an on site service department.
- Users group now forming

BLANK CASSETTES
C-10 BLANK CASSETTES (W/O BOX) FOR MICRO COMPUTING.
$ 1.00 Ea. Other lengths will be available in the future.
$ 7.50 for 10 Call or write for quotes on larger quantities.
$32.50 for 50 Add 10% (minimum $2.00) for shipping and handling.

16K RAM FOR APPLE II
- 4116 Chips. 8 per set makes 16K RAM. Just any 4116 chips will not work in the Apple II. 350NS or slower will not work properly. 250NS chips are adequate. 200NS chips are preferable.
- 200NS chips. Tested and guaranteed $95.00 per set.
- Add $ 2.00 for shipping and handling.

<table>
<thead>
<tr>
<th>QUANT.</th>
<th>ITEM</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIFORNIA RESIDENTS, ADD 6% SALES TAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHIPPING & HANDLING, ADD $10.00 FOR COMPUTER SYSTEM.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABOVE ITEMS ARE NORMAL STOCK ITEMS. DUE TO CIRCUMSTANCES BEYOND OUR CONTROL, WE ARE SOMETIMES TEMPORARILY OUT OF STOCK. PLEASE CHECK APPROPRIATE BOX BELOW.

CERTIFIED CHECK, MONEY ORDER, VISA OR MASTER CHARGE ORDERS SHIPPED SAME DAY. NO COD. ALLOW 2 WEEKS FOR PERSONAL CHECK TO CLEAR.

PLEASE BACK ORDER IF OUT OF STOCK □
DO NOT BACK ORDER IF OUT OF STOCK □

IF USING CREDIT CARD, CHECK BOX AND ENTER CARD NUMBER BELOW.

MASTER CHARGE □
VISA □
Table of Contents

In This Issue/MICRO Interrupts
by Alan G. Hill
3

An Apple II Program Edit Aid
by J. Stelly
5

Lifesaver
by 3. Stelly
9

Corrected KIM Format Loader for SYM-1
by Nicholas J. Vrtis
12

A Close Look at the Superboard II
by Bruce Hoyt
15

EKIM or MAXI-KIM
by Andrew V. W. Sensicle
19

A Cassette Operating System for the Apple
by Robert A. Stein, Jr.
21

ASK the Doctor - Part III
by Robert M. Tripp
25

The MICRO Software Catalog: VII
by Mike Rowe
29

SYM-1 6522-Based Timer
by John Gieryc
31

The TVT-6: A User's Report
by Edward Chalfin
34

6502 Bibliography - Part X
by William R. Dial
35

The Ultimate PET Renumber
by Don Rindsberg
37

Advertiser's Index

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B Computers</td>
<td>12</td>
</tr>
<tr>
<td>Classified Ads</td>
<td>45</td>
</tr>
<tr>
<td>Compass Microsystems</td>
<td>BC</td>
</tr>
<tr>
<td>Computer Forum</td>
<td>IFC</td>
</tr>
<tr>
<td>Computer Components</td>
<td>.4</td>
</tr>
<tr>
<td>The Computerist</td>
<td>8</td>
</tr>
<tr>
<td>Connecticut Microcomputer</td>
<td>24</td>
</tr>
<tr>
<td>Dr. Daley</td>
<td>27</td>
</tr>
<tr>
<td>Enclosures Group</td>
<td>2</td>
</tr>
<tr>
<td>H. Geller Computer Systems</td>
<td>36</td>
</tr>
<tr>
<td>Hudson Digital Electronics</td>
<td>33</td>
</tr>
<tr>
<td>MICRO</td>
<td>45</td>
</tr>
<tr>
<td>Optimal Technology, Inc.</td>
<td>26</td>
</tr>
<tr>
<td>P.S. Software House</td>
<td>47</td>
</tr>
<tr>
<td>Plainsman Micro Systems</td>
<td>32</td>
</tr>
<tr>
<td>Programma International</td>
<td>48</td>
</tr>
<tr>
<td>Progressive Software</td>
<td>16</td>
</tr>
<tr>
<td>Seawell Marketing</td>
<td>20</td>
</tr>
<tr>
<td>Softside Software</td>
<td>10C</td>
</tr>
<tr>
<td>Sybex</td>
<td>8</td>
</tr>
<tr>
<td>West Side Electronics</td>
<td>7</td>
</tr>
</tbody>
</table>

Please address all correspondence, subscriptions and address changes to:
MICRO, P.O. Box 3, So. Chelmsford, MA 01824
PERFECT AIM

ATTRACTIVE FUNCTIONAL PACKAGING
FOR YOUR AIM-65 MICROCOMPUTER

- Professional Appearance
- Striking Grey and Black Color Combination
- Protects Vital Components

ENGINEERED SPECIFICALLY FOR THE ROCKWELL AIM-65
- All Switches Accessible
- Integral Reset Button Actuator
- Easy Paper Tape Replacement

EASILY ASSEMBLED
- Absolutely No Alteration of AIM-65 Required
- All Fasteners Provided
- Goes Together in Minutes

MADE OF HIGH IMPACT STRENGTH THERMOFORMED PLASTIC
- Kydex 100*
- Durable
- Molded-In Color
- Non-Conductive

AVAILABLE FROM STOCK
- Allow Three to Four Weeks for Processing and Delivery
- No COD's Please
- Dealer Inquiries Invited

TO ORDER:
1. Fill in this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

NAME
STREET
CITY
STATE ZIP

Please Ship Prepaid SAE 1-1(s)
@ $43.50 each
California Residents Please Pay $46.33 (Includes Sales Tax)

*TM Rohm & Haas

enclosures group
753 bush street
san francisco, california 94108

Patent Applied For
Andrew V. W. Sensicle increases the power of the basic KIM-1 with "KIM OR MAXI-KIM", a small, page 17 monitor extension. This supports a PC "decrement" to compliment the normal "increment" function, "open up" and "close up" modes to move blocks of data to make room for adding code, and a "branch" calculator which simplifies determining the relative branch addresses.

Robert A. Stein, Jr. provides "A CASSETTE OPERATING SYSTEM FOR THE APPLE II" which makes it possible to maintain a library of programs which can be loaded by name from cassette. The article includes a cassette control circuit as well as the programs in assembler and BASIC to run the system.

Alan G. Hill presents "AN APPLE II PROGRAM EDIT AID" which helps the user locate all occurrences of any variable name, character string, or BASIC statement. The article includes a short assembler level program and a BASIC demo program.

J. Stelly makes it a lot easier to use the game of LIFE on your PET with his "LIFESAVER". This program supports creating a LIFE pattern, running LIFE at various rates, and saving and loading LIFE patterns on cassette.

Nicholas J. Vrtis helps overcome the SYM-1's KIM tape "2F" problem with a "CORRECTED KIM FORMAT". This program supports creating a KIM format, running KIM at various rates, and saving and loading KIM patterns on cassette.

Bruce Hoyt comes through with a lot of good info on the OSI with "A CLOSE LOOK AT THE SUPERBOARD II". In addition to an overview, he presents a cassette save/hex memory dump program and a very useful table of memory usage.

Robert M. Tripp continues "ASK THE DOCTOR", a series on the AIM/SYM/KIM family of microcomputers, with a "CORRECTED AIM SYNC PROGRAM", a "Patch for the AIM Dismassembler", a "SYM Tape Evaluation", and "Comments on Synertek BASIC". Most of the info in this month's section has been provided by other ASK users.

"THE MICRO SOFTWARE CATALOG" continues with ten new entries.

John Gierlic has a tutorial article on a "SYM 6522-BASED TIMER" that gives insight into the workings of the 6522 VIA as well as the SYM.

Edward Chalfin has "THE TWT-6: A USER'S REPORT" which give his experiences and impressions of Don Lancaster's inexpensive method of getting a video signal out of a KIM-1.

Willis R. Dial continues to cover the expanding 6502 literature in his "6502 BIBLIOGRAPHY".

Don Rindsberg presents a major program in "THE ULTIMATE PET RENUMBER". This complete program can be used to rapidly renumber BASIC programs. The article also includes other useful info.

MICRO INTERRUPTS

The BEST of the PET GAZETTE has recently been published and should be of interest to all PET owners. It is available for $9.95 from:

Microcomputer Resource Center, Inc.
1929 Northport Drive, Room 6
Madison, WI 53704

6502 COMPUTER GROUPS

The New England Apple Tree is now meeting on the third Wednesday of each month, 7 - 10:00 PM, at the cafeteria of the MITRE Corp. in Bedford, MA. You can contact, for further information:

Richard F. Suitor
166 Tremont Street
Newton, MA 02158

The Carolina Apple Core has been formed in the Research Triangle Area of North Carolina. The monthly meetings are on the third Tuesday of the month at different locations. Annual dues are $5.00 and include a monthly newsletter. Contact:

F. "Butch" Clayton, President
5212 Inglewood Lane
Raleigh, NC 27609
919/682-3756 or 596-8970

New York City now has an Apple users group: The Big Apple Users Group. Meetings are the second Tuesday of every month at the Computer Mart of Manhattan at 6:30 PM. For further info contact:

Neil Shapiro
34 Spencer Drive
Bethpage, NY 11714
516/579-4295 (home)
212/262-4808 (office)

The Apple Corps of San Diego is publishing an eight page newsletter. Unfortunately, by the time it reaches us, the information on the next meeting is too dated for us to print. The person to contact for information is:

Phillip A. Lemon
5685 Repecho Lane, #108
San Diego, CA 92124
714/560-7962

**** ATTENTION ALL 6502 CLUBS ****

Now that MICRO is published monthly, we can get the word out on when and where you are meeting - if you get the word in to us. We need times and dates and places by the first of the preceding month - April 1 for the May issue and so forth. Also, please put us on your mailing list for any newsletter or other material you send out. We want to help your club prosper by giving it as much exposure as possible, but we need your input to make it happen.

*** On The Cover ***

With all of the new 6502 based microcomputers, it is easy to forget about the KIM-1 which was the first 6502 system. Many thousands have been sold, and after a period of production problems, the quality of the KIM-1 has been remarkably improved recently. Considering all of the articles we continue to receive about the KIM-1, it looks as though this system is here to stay for a long time.
Software

We now have a complete software catalog.

Apple:
- Apple 2
- Bacteriater
- Income Tax
- Super Star Wars
- Appletalker
- Bomber
- Apple-Lisener
- Appletalker
- Caser
- Electronic Index Card File
- Single Disc Copy
- Mailing List
- Text Editor

On Disk:
- Editor/Assembler
- Super Ammunition
- Talking Disk
- Inventory System
- Text Editor
- Mailing List
- Single Disc Copy
- Memo Calendar
- Electronic Index Card File

PET:
- Pet Show
- Galaxy Games
- Space Walk & Space Fight
- Space Trek
- Finance
- Microchess
- Casino Pac 13 Games
- Off The Wall Target Pong
- Mortgage
- Diet Planner/Biorythm
- BASIC

Software for Apple and PET Owners

- Programming the 6502
- PET User Manual (New from Commodore)
- First Book of KIM
- MOS Tech Programming Manual (6502)
- MOS Tech Hardware Manual

Hardware

- **Apple II Hardware:**
 - Modem for Apple II, ready to go
 - Upper & Lower Case Board
 - Printer Specials for Apple and PET
 - Programmer Aid

- **PET Hardware:**
 - Beeper
 - Petunia
 - Video Buffer

- **Printer Specials for Apple and PET**
 - Trencom 100

- **Software for Apple and PET Owners**
 - Programming the 6502
 - PET User Manual (New from Commodore)
 - First Book of KIM
 - MOS Tech Programming Manual (6502)
 - MOS Tech Hardware Manual

SYSTEMS

Apple II 16K RAM $1195.00
Commodore PET 8K RAM $795.00
Commodore KIM I $159.00
Microproducts Super KIM $395.00

Delivery on most systems is usually stocked to 2 weeks. Call or write for specific information.

16K RAM CHIP SET FOR APPLE II
ONLY (Tested & Burned In) $95.00

WORKSHOPS: Call for details.
- PET—3rd Saturday of the Month
- APPLE—4th Saturday of the Month

CLASSES: Apple Topics

We offer a series of classes on Apple II to acquaint owners with some of the unique features and capabilities of their system. Topics covered are Apple Sounds, Low Res. Graphics, Hi Res. Graphics, Disk Basics, and How to Use Your Reference Material. Sessions are held every Thursday Night at 7:00 p.m.

Why Should You Buy From Us?

Because we can help you solve your problems and answer your questions. We don't claim to know everything, but we try to help our customers to the fullest extent of our resources.

Computer Components of Orange County

6791 Westminster Ave., Westminster, CA 92683
714-898-8330

Hours: Tues-Fri 11:00 AM to 8:00 PM—Sat 10:00 AM to 6:00 PM (Closed Sun, Mon)

Master Charge, Visa, B of A are accepted. No COD. Allow 2 weeks for personal check to clear.

Add $1.50 for handling and postage. For computer systems please add $10.00 for shipping, handling, and insurance. California residents add 6% Sales Tax.
When editing an Apple Integer Basic program, you often want to locate all occurrences of a variable name, character string, or BASIC statements. This is usually the case when you are changing a variable name, moving a subroutine, etc., and you want to be sure you have located all references. The BASIC Edit program presented here should aid your editing.

The BASIC program should be loaded into high memory and the program to be edited appended to it. The Edit program uses a machine language routine at hex 300 to 39F to search BASIC statements for the requested string and return the BASIC line number in memory locations 17 and 18. The routine is re-entered at 846 to find the line number of the next occurrence. This process is continued until no further occurrences can be found. The high order byte of the line number (location 18) is set to hex FF to indicate that the search is finished.

BASIC Edit Program

Note in line 32680 of the BASIC program that LIST LINE is an invalid BASIC statement. You will have to resort to a little chicanery to get the statement in. First code line 32680 as PRINT LINE. Then, enter the monitor and change the PRINT token ($62) to a LIST token ($74). This is easiest done if you code line 32680 first and then search for the token in high memory ($3FFA when HIMEN is 16384).

After coding the BASIC program and the machine language routine, you will then need to append the program to be edited. Note that the program must have line numbers less than 32600. To append a program, you must first “hide” the Edit program. This is done by moving the HIMEN pointer (202) and (203) down below the Edit program. Then load the edited program and reset HIMEM: i.e.:

```
LOAD (EDIT PROGRAM)
POKE 76, PEEK (202)
POKE 77, PEEK (203)
LOAD (PROGRAM TO BE EDITED)
POKE 76,0 HIMEM MOD 256
POKE 77,64 HIMEM/256
```

You can then RUN 32600 the Edit program. Enter the character string or variable name to be searched when prompted by “FIND?”. To search for a hex string (e.g. all occurrences of COLOR=), enter an @ character followed by the desired hex character pair (@66 for the COLOR= example)

EXAMPLES

<table>
<thead>
<tr>
<th>To find all occurrences of:</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCORE</td>
<td>SCORE</td>
</tr>
<tr>
<td>XYZ</td>
<td>XYZ</td>
</tr>
<tr>
<td>RETURN</td>
<td>@SB</td>
</tr>
<tr>
<td>DIM A</td>
<td>@4EC1</td>
</tr>
<tr>
<td>All references to 1000</td>
<td></td>
</tr>
</tbody>
</table>

The Edit program will end if the screen is full (> 18 lines). To continue the search for more occurrences, a RUN 32720 will return another page. Happy Editing!

Find Routine

Page Zero Memory Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3-4</td>
<td>Address of search limit. Set to HIMEM by routine, but could be set lower to avoid searching Edit program.</td>
</tr>
<tr>
<td>$6-7</td>
<td>Address of BASIC Token compared. Incremented until it exceeds Limit Address</td>
</tr>
<tr>
<td>$8-9</td>
<td>Ending address - 1 of current statement being scanned</td>
</tr>
<tr>
<td>$A-B</td>
<td>Address of string being searched. Set up by Edit program</td>
</tr>
<tr>
<td>$C</td>
<td>Length - 1 of string being searched. Set up by Edit program</td>
</tr>
<tr>
<td>$11-12</td>
<td>Line number of statement containing the requested string. $12 is set to $FF if no more occurrences</td>
</tr>
</tbody>
</table>

FIND ROUTINE

A. G. HILL

MARCH 1979

<table>
<thead>
<tr>
<th>HILO</th>
<th>$0003</th>
<th>HIMEM LO BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIHI</td>
<td>$0004</td>
<td>HIMEM HI BYTE</td>
</tr>
<tr>
<td>BSL</td>
<td>$0006</td>
<td>BASIC STATEMENT LO</td>
</tr>
<tr>
<td>BSH</td>
<td>$0007</td>
<td>BASIC STATEMENT HI</td>
</tr>
<tr>
<td>Seal</td>
<td>$0008</td>
<td>STATEMENT ENDING ADDRESS LO</td>
</tr>
<tr>
<td>SeAH</td>
<td>$0009</td>
<td>STATEMENT ENDING ADDRESS HI</td>
</tr>
<tr>
<td>StrL</td>
<td>$000A</td>
<td>STRING LO</td>
</tr>
<tr>
<td>LNL</td>
<td>$0011</td>
<td>LINE NUMBER LO</td>
</tr>
<tr>
<td>LNH</td>
<td>$0012</td>
<td>LINE NUMBER HI</td>
</tr>
</tbody>
</table>
SET UP ADDRESS OF FIRST BASIC STATEMENT IN LOCS 6 AND 7
SET UP TO STOP SEARCH AT HIMEM. COULD BE CHANGED TO LIMIT SEARCH AT END OF PROGRAM BEING EDITED
GET STATEMENT LENGTH MINUS 2 TO POINT TO LAST TOKEN IN STATEMENT
SET UP TO STOP SEARCH AT HIMEM. COULD BE CHANGED TO LIMIT SEARCH AT END OF PROGRAM BEING EDITED
SET UP STATEMENT ENDING ADDRESS IN 8 AND 9
SET UP TO STOP SEARCH AT HIMEM. COULD BE CHANGED TO LIMIT SEARCH AT END OF PROGRAM BEING EDITED
GET STATEMENT LENGTH MINUS 2 TO POINT TO LAST TOKEN IN STATEMENT
SET UP STATEMENT ENDING ADDRESS IN 8 AND 9
ADD IN CARRY IF ANY
SAVE LINE NUMBER IN 11 AND 12
ADJUST BSL TO POINT TO FIRST TOKEN
COMPARE TOKEN TO FIRST CHARACTER IN STRING
IF NOT EQUAL POINT TO NEXT
IF EQUAL COMPARE REMAINING CHARS
POINT TO NEXT TOKEN
CARRY CLEAR THEN LOOK AT NEXT AT END OF STATEMENT.
CHECK TO SEE IF AT END OF STATEMENT.
SEARCH LIMIT
CARRY SET = LIMIT OF SEARCH
SET UP BSL AND BSH TO POINT TO NEXT STATEMENT
SET UP LARGE LINE NUMBER
TO INDICATE AT END OF SEARCH
RETURN TO BASIC
ROUTINE TO INCREMENT
POINTERS. ENTER WITH
XREG = DISPLACEMENT FROM
BSL, BSH
ACC = INCREMENT AMOUNT

ROUTINE TO INCREMENT
THE TOKEN ADDRESS BY 1
SET CARRY IF AT END
OF STATEMENT

ROUTINE TO COMPARE
REMAINING CHARACTERS
(C) LENGTH OF CHARACTER
STRING -1
RESET YREG

FOUND A MATCH! POP STACK ADDRESS
AND RETURN TO BASIC. LINE NUMBER
IS ALREADY IN LNL AND LNH.

BASIC EDIT PROGRAM

32600 DIM A$(30)
32610 INPUT "FIND?",A$: CALL -936:
IF A$(1,1)="@" THEN 32630:
KK=LEN(A$): FOR I=1 TO KK:
POKE 911+I,ASC(A$(I,1)): NEXT I
32620 POKE 12,KK-1: GOTO 32650
32630 A$=A$(2,LEN(A$)): KK=LEN(A$):
FOR I=1 TO KK STEP 2:
I=ASC(A$(I,1))-176:
JJ=ASC(A$(I+1,1+1))-176
32640 IF J>9 THEN J=J-7:
IF JJ>9 THEN JJ=JJ-7:
POKE 912+I/2,J*16+JJ: NEXT I:
POKE 12,KK-2-1
32650 POKE 10,912MOD256: POKE 11,912/256
32660 CALL 768
32670 IF PEEK(18)>127 THEN 32730:
LINE=PEEK(17)+PEEK(18)*256
32680 LIST LINE
32690 IF PEEK(37)>18 THEN 32730
32700 CALL 846
32710 GOTO 32670
32720 CALL -936: GOTO 32700
32730 END

APPLE II® OWNERS:

West Side Electronics introduces the
APPLETIME™, a Real Time Clock for the Apple II

The Appletime (Model APT-1) is a single peripheral board which plugs directly into any I/O slot on the Apple II. Timing is done completely in hardware (ie. NOT an interrupt driven clock). Thus, the Appletime continues to operate even when the computer is turned off. Our exclusive Three Way Power System keeps the clock running via its own AC supply, the computer's, or battery backup in case of power failure. Other features include 12/24 Hour selection, AC or crystal timebase, 50/60 Hz, and BCD or ASCII data format.

Fully assembled and tested, with instructions and

SPECIAL INTRODUCTORY PRICE

APT-1 Real Time Clock..$59.95
Pre-constructed board for Apple II. Over 1300 holes on 0.1 inch centers for designing your own circuits.
APB-1 Prototyping Board......................................$16.95

** SUPER SPECIAL **

This month only, order the APT-1 and the APB-1 at a special combination price of..$69.95

WEST SIDE ELECTRONICS
P.O. Box 636
CHATSWORTH, CA. 91311

We pay all shipping in Continental U.S.A. Others add 10%; California residents add 6% tax.

APRIL 1979
ENCLOSURE WITH BUILT IN POWER SUPPLY

SPECIFICATIONS:
- INPUT: 110/220 VAC 50/60 Hz
- OUTPUT: +5V 5A, +24V 1A
- GROUNDED THREE WIRE LINE CONNECTION
- ON/OFF SWITCH WITH PILOT LIGHT
- Enclosure has room for the AIM and one additional board: MEMORY PLUS or VIDEO PLUS

AIM PLUS: $1000
AIM and AIM PLUS: $4750

VIDEO PLUS

- FOR AIM/SYM/KIM
- UPPER CASE ASCII
- 120 ADDITIONAL USER PROGRAMMABLE CHARACTERS: GRAPHICS, SYMBOLS, FOREIGN CHARACTERS
- PROGRAMMABLE SCREEN FORMATTED TO 80 CHARACTERS, 24 LINES
- KEYBOARD AND LIGHT PEN INTERFACES
- UP TO 4K DISPLAY RAM
- OPTION TO ADD 3K DISPLAY RAM
- STAND-ALONE SYSTEM
- ASSEMBLED AND TESTED
- VIDEO PLUS: $2450

MOTHER PLUS

- FOR AIM/SYM/KIM
- ADD UP TO FIVE ADDITIONAL BOARDS
- AUDIO/OUTPUT CONNECTIONS
- POWER TERMINALS
- APPLICATION CONNECTORS
- FULLY BUFFERED
- FULLY DECODED
- KIM-4 BUS STRUCTURE
- MOTHER PLUS: $800

MEMORY PLUS

- FOR AIM/SYM/KIM
- 8K STATIC RAM
- LOW POWER
- SOCKETS FOR 8K EPROM
- 6522 I/O PORT ON BOARD REGULATORS
- EPROM PROGRAMMER
- MEMORY PLUS: $2450

AIM PLUS

- ENCLOSURE WITH BUILT IN POWER SUPPLY
- INPUT: 110/220 VAC 50/60 Hz
- OUTPUT: +5V 5A, +24V 1A
- GROUNDED THREE WIRE LINE CONNECTION
- ON/OFF SWITCH WITH PILOT LIGHT
- Enclosure has room for the AIM and one additional board: MEMORY PLUS or VIDEO PLUS

AIM PLUS: $1000
AIM and AIM PLUS: $4750

VIDEO PLUS

- FOR AIM/SYM/KIM
- UPPER CASE ASCII
- 120 ADDITIONAL USER PROGRAMMABLE CHARACTERS: GRAPHICS, SYMBOLS, FOREIGN CHARACTERS
- PROGRAMMABLE SCREEN FORMATTED TO 80 CHARACTERS, 24 LINES
- KEYBOARD AND LIGHT PEN INTERFACES
- UP TO 4K DISPLAY RAM
- OPTION TO ADD 3K DISPLAY RAM
- STAND-ALONE SYSTEM
- ASSEMBLED AND TESTED
- VIDEO PLUS: $2450

MOTHER PLUS

- FOR AIM/SYM/KIM
- ADD UP TO FIVE ADDITIONAL BOARDS
- AUDIO/OUTPUT CONNECTIONS
- POWER TERMINALS
- APPLICATION CONNECTORS
- FULLY BUFFERED
- FULLY DECODED
- KIM-4 BUS STRUCTURE
- MOTHER PLUS: $800

MEMORY PLUS

- FOR AIM/SYM/KIM
- 8K STATIC RAM
- LOW POWER
- SOCKETS FOR 8K EPROM
- 6522 I/O PORT ON BOARD REGULATORS
- EPROM PROGRAMMER
- MEMORY PLUS: $2450

AN INTRODUCTION TO PERSONAL AND BUSINESS COMPUTING
by Rodnay Zaks
250 pp, ref C200 $6.95
The basic introductory text on microcomputers, with a detailed evaluation of the features and peripherals required for specific applications. No prior computer knowledge required.

MICROPROCESSORS: from Chips to Systems
by Rodnay Zaks
420 pp, ref C201 $9.95
An educational text, used worldwide at universities and in industry designed to teach all the fundamentals of microprocessors, the assembly of a system, and its use.

MICROPROCESSOR INTERFACING TECHNIQUES
by Austin Lasea and Rodnay Zaks
416 pp, ref C207 $11.95
All the basic interfacing techniques, from keyboard to floppy disk, including the standard buses ($100 to 1EEE488).

MICROPROCESSOR LEXICON
by Rodnay Zaks
120 pp, ref X1 $2.95
Dictionary and tables. All the definitions of the microprocessor world in a pocket book format.

MICROPROGRAMMED APL IMPLEMENTATION
by Rodnay Zaks
330 pp, ref Z10 $25.00
How to design an APL interpreter.

MICROPROCESSOR INTERFACING TECHNIQUES
by Austin Lasea and Rodnay Zaks
416 pp, ref C207 $11.95
All the basic interfacing techniques, from keyboard to floppy disk, including the standard buses ($100 to 1EEE488).

MICROPROCESSOR LEXICON
by Rodnay Zaks
120 pp, ref X1 $2.95
Dictionary and tables. All the definitions of the microprocessor world in a pocket book format.

MICROPROGRAMMED APL IMPLEMENTATION
by Rodnay Zaks
330 pp, ref Z10 $25.00
How to design an APL interpreter.

SELF STUDY COURSES ON CASSETTES
Ten courses to study at home or in the car. The most time-efficient way to learn. Includes workbook and cassettes.

INTRODUCTORY $29.95 ea
S1-INTRODUCTION TO MICROPROCESSORS (2.5 hrs)
S2-PROGRAMMING MICROPROCESSORS (2.5 hrs)

COMPREHENSIVE $59.95 ea
SB1-MICROPROCESSORS (12 hrs)
SB2-MICROPROCESSOR PROGRAMMING (10 hrs)
SB3-SPECIALIZED (6 hrs)

TO ORDER
By phone: 415.848-8233, Visa, MC, American Express
By mail: circle books on ad. Include payment.
Shipping: add 65¢ per book (6th class) or $1.50 faster shipping (UPS). Double for cassettes and overseas. Tax: in California add tax.

FREE DETAILED CATALOGUE

SYBEX
LEADER IN MICROCOMPUTER EDUCATION

P.O. Box 3, Sol. Chelmsford, MA 01824
617/256-3649
Is LIFE passing you by; does it progress so quickly that there is little time to enjoy it? Well, fear not—the LIFESAVER is here. Though time marches on, now you are in control. If you got "LIFE For Your PET" from Dr. Frank H. Covitz (The Best of Micro, p. 65), LIFE moves along at a pretty good clip. LIFESAVER is a BASIC program that complements and provides some enhancements to Dr. Covitz machine language routines.

LIFESAVER provides a convenient grid for setting up cellular patterns, permits saving and loading of patterns on the built-in cassette unit, and gives complete control of the time interval between generations. You may even single-step through the LIFE sequences.

Commodore is supposedly mailing all owners of early model PET units the TIM monitor on cassette, so I will assume its availability in this discussion. It ain't the best monitor in the world, but it does allow you to load machine language programs directly from the cassette without any special loader routines. This does not exclude other methods the reader may have at his (or her) disposal if TIM is not available.

A single modification to Dr. Covitz program is required before it can be used with LIFESAVER. Location 191D (16) should be changed to read:

```
191D 60 RTS
```

When this change is made the program may be entered at 190A(16) e.g. SYS(6410). If the TIM monitor is used, simply do a hex dump of the machine language listing and save the program on tape using the instructions given in the manual.

Before loading LIFE (Dr. Covitz program) or LIFESAVER (by yours truly) from cassette, I recommend the following command be executed:

```
POKE 134,0:POKE 135,24
```

This lowers the BASIC boundary and prevents conflicts between the two programs. The regular BASIC limit can later be reinstated by POKE 135,32. It is also a good idea to load LIFE before LIFESAVER is loaded. This prevents the data pointer from getting initialized to the wrong location.

It may be possible to eliminate lines 3015 and 3035 from the BASIC listing, if you have a relatively late model PET. These lines are necessary for the older units that have a problem with writing file headers and cassette motor start/stop control. My unit was delivered in Sept '78 and I was able to eliminate these lines.

Assuming that both LIFE and LIFESAVER have successfully been loaded, you may begin entering your favorite cell patterns. Please refer to Dialog 1 (human inputs are underlined) to see how this is done. After the grid is printed simply press the 'RETURN' key and enter your pattern anywhere in the grid area using the cursor keys and the dot (•) symbol above the Q key. After you've created the desired pattern press the 'HOME' key and the 'RETURN' key in succession. This neat little trick returns control to the LIFESAVER routine without having to explicitly key in the command 'GOTO 1000'. After the PET has saved the pattern internally the user then has the options to save it on tape, have the computer generate LIFE patterns as described in Dr. Covitz article, or scrap it and input a new pattern.

The options are relisted after the execution of any LIFESAVER command. Examples on exercising the different options are given in the remaining dialogs.

LIFESAVER should relieve the user from the tedium of having to manually reenter a LIFE pattern every time it is desired to run it. It should also encourage the user to experiment with various LIFE forms, some of which are quite dazzling.

DIALOG 1

RUN

LIFE

Please choose an option

1. Create a Pattern
2. Run LIFE Generator
3. Load a Pattern from Cassette
4. Save a Pattern on Cassette

Option number ? 1 (RETURN)

(Go to 1000 ?)

(At this point the user presses the RETURN key and proceeds to input a cell pattern.)

(Go to 1000 ?)

(With the desired pattern on the CRT the user presses the HOME and RETURN keys to resume program execution.)

STORING CELL PATTERN

(After a slight delay the computer again responds with the option list.)
LIFE

..

(Option List)

..

OPTION NUMBER ? 2 (RETURN)

(Screen clears ...)

HOW MANY GENERATIONS ? 7
DEVELOPMENT RATE
0: SINGLE STEP VIA (G) KEY
1-99: INTERMEDIATE RATES
100: MAX (255 GENERATION LIMIT)

RATE ? 75

(The computer proceeds to display generations sequentially at the specified rate. The larger the numerical value of the rate the faster the generations are produced. A rate of 0 means that only one generation is produced at a time. The G key must be pressed to obtain subsequent generations.)

NOTE: In the following BASIC listing the lower case abbreviations stand for cursor control keys and have the following meaning:

clr = clear screen
home = home up
cd = cursor down
s = space key

LISTING

1 REM LIFESAVER
2 REM BY JAMES W. STELLY
3 REM POKE 135,24 BEFORE USING
100 DIM A$(25)
110 PRINT "clrLIFE":PRINT
120 PRINT "PLEASE CHOOSE AN OPTION:1 1 :PRINT
130 PRINT "1. CREATE A PATTERN"
140 PRINT "2. RUN LIFE GENERATOR"
150 PRINT "3. LOAD A PATTERN FROM CASSETTE"
160 PRINT "4. SAVE PATTERN ON CASSETTE"
170 INPUT "OPTION NUMBER";N
180 ON N G0SUB 200,2000,4000,3000
190 GOTO 110

CREATE GRID FOR PATTERN INPUT
200 PRINT "clr cd";
210 FOR I=1 TO 5
220 PRINT "---*----1----1----1----1----1----1---1"
230 PRINT " < I I I I 1 I I I I
240 PRINT
250 PRINT " 4
260 NEXT I
270 PRINT "---*----1----1----1----1----1----1---1"
280 PRINT "
290 PRINT "
300 PRINT "
310 INPUT "home GOTO 1000";A$
STORE PATTERN

1000 PRINT "homeSTORING CELL PATTERN"
1010 FOR I=1 TO 24: A$(I)="": NEXT I
1020 FOR I=1 TO 24: FOR J=1 TO 39
1030 IF PEEK(32767+J+(I*40))= 81 THEN A$(I)=A$(I)+"f": GOTO 1050
1040 A$(I)=A$(I)+"-"
1050 NEXT J:NEXT I
1060 RETURN

ACCESS LIFE GENERATOR

2000 INPUT "clrHOW MANY GENERATIONS";G
2010 PRINT "cdDEVELOPMENT RATE:"; PRINT
2020 PRINT "0;SINGLE STEP VIA (G) KEY"
2030 PRINT "1-99:INTERMEDIATE RATES"
2040 PRINT "100:MAX (255 GENERATIONS LIMIT)"
2050 INPUT "cdRATE";S
2060 PRINT "clrGEN 0"
2070 FOR I=1 TO 23: PRINT A$(I): NEXT I
2075 PRINT A$(I);: FOR I=1 TO 2000: NEXT I
2080 IF S=100 THEN POKE 6483,256-G:SYS(6410): GOTO 2140

INTERMEDIATE RATES

2100 POKE 6483,255: IF S=0 GOTO 2160
2110 S=100-S: FOR I=1 TO G
2120 SYS(6410): PRINT "homeGEN"; I
2130 FOR J=1 TO S*30: NEXT J: NEXT I
2140 GET A$: IF A$<"X" GOTO 2140
2150 RETURN

SINGLE STEP

2160 G=1
2170 SYS(6410): PRINT "homeGEN"; G
2180 GET A$: IF A$="X" THEN RETURN
2190 IF A$="G" THEN G=G+1: GOTO 2170
220 GOTO 2180

SAVE PATTERN

3000 INPUT "clrPATTERN NAME"; A$
3010 OPEN 1,1,1,A$
3015 POKE 243,122:POKE 244,2
3020 FOR I=1 TO 24
3030 PRINT#1,A$(I)
3035 POKE 59411,53
3040 NEXT I
3050 CLOSE 1: RETURN

LOAD PATTERN

4000 INPUT "clrPATTERN NAME"; A$
4010 OPEN 1,1,0,A$
4020 FOR I=1 TO 24: INPUT#1,A$(I): NEXT I
4030 CLOSE 1: RETURN
CORRECTED KIM FORMAT LOADER FOR SYM-1

Nicholas J. Vrtis
5863 Pinetree S.E.
Kentwood, MI 49508

My cassette is an old model GE, and it won't quite hack the high speed tape format of the SYM-1, so I have probably used the KIM format option more than most SYM owners. In the process, I have found a bug in the SYM monitor tape load routine. Synertek knows about the problem, but didn't have a nice fix when I called, so I worked up the attached program.

The problem with the monitor routines is that they will not load a slash (hex 2F) from a KIM format tape. The slash is used to indicate that the data is done, and the checksum follows. The monitor routines don't check for the slash until after the KIM characters have been read and combined. The error you get is a checksum error (ER CC).

Most of the code for this program has been copied from the SYM monitor routines, except these work. The basic logic change is that when a slash is read as a single KIM byte, it is treated as a non-hex character. The non-hex routine checks for the slash instead of after every character. If it is a slash, it goes to the checksum check routine.

This routine is not as fancy as the monitor routines, but it sure beats re-keying a couple K bytes of program. It has turned out to be convenient to have this program available even for loading programs without the slash. By changing the branch after the compare for the slash to a branch back to LOADT7 it will ignore errors. Sometimes this will load a bad tape with only minor errors. Other times the program gets out of sync and loads garbage. It is worth the try for a tape you have spent a lot of time on.

One final comment about cassettes. If you have the remote control connected, putting a hex CC into location AOOC will turn the cassette motor back on. It is easier than yanking the remote plug.

<table>
<thead>
<tr>
<th>PET 8K</th>
<th>Introductory Special</th>
<th>$795.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes software...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and sound package</td>
<td></td>
</tr>
<tr>
<td>KIM-1</td>
<td></td>
<td>161.</td>
</tr>
<tr>
<td>SYM</td>
<td></td>
<td>238.</td>
</tr>
<tr>
<td>KL512</td>
<td>Power Supply with KIM or SYM</td>
<td>$30.00</td>
</tr>
<tr>
<td></td>
<td>for KIM, SYM and extra memory</td>
<td></td>
</tr>
<tr>
<td>KM8B</td>
<td>8K Static RAM for KIM, SYM, AIM</td>
<td>149.00</td>
</tr>
<tr>
<td>KIM-4 Motherboard</td>
<td></td>
<td>95.00</td>
</tr>
<tr>
<td>Memory Plus - the Computerist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8K RAM, sockets for 8K EPROM, EPROM Programmer, timers, and I/O</td>
<td>238.00</td>
</tr>
<tr>
<td>Enclosures from Enclosure Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYM</td>
<td></td>
<td>$36.00</td>
</tr>
<tr>
<td>KIM</td>
<td></td>
<td>23.00</td>
</tr>
</tbody>
</table>
| NorthStar Horizon 2 Double Density $1649.

CASSETTE TAPES

Premium quality, low noise in 5 screw housing with labels
ALL TAPES GUARANTEED

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-10</td>
<td>5.95</td>
<td>26.00</td>
<td>48.00</td>
</tr>
<tr>
<td>C-30</td>
<td>7.00</td>
<td>31.00</td>
<td>57.00</td>
</tr>
</tbody>
</table>

Norelco hinged hard boxes 10/1.25
Soft poly plastic boxes 10/1.00

2716 EPROM (Intel +5 Volt) $38.00
2114L 450ns 4K Static RAM 6.95
Programming a Microcomputer:
6502 Foster 8.95
6500 Programming Manual 6.50
6500 Hardware Manual 6.50
First Book of KIM 9.00
Microcomputer Programming:
6502 R. Zaks 9.00

New PET 16K $995
PET 32K $1195
special includes software and sound package

Write for list of 6502 and S-100 products

A B Computers

P.O. Box 104
Perkasie, PA 18944
(215) 257-8195
FIXED SYM-1 KIM FORMAT LOADER

NICHOLAS J. VRTIS
MARCH 1979

STRIPPED DOWN VERSIONS OF L1 COMMAND.
WILL LOAD A 2F WHICH CAUSES SYM-1 TROUBLE.
ONLY FOR KIM FORMAT TAPES.
ID SHOULD BE PUT INTO LOCATION 0000.

0080 CHAR * $00FC CHAR ASSEMBLY & DISASSEMBLY
0080 MODE * $00FD
0080 BUFADL * $00FE CURRENT CHAR INDIRECT ADDRESS
0080 BUFADH * $00FF

SYM-1 REFERENCES

0080 DDRIN * $A002
0080 VIAACR * $A00B
0080 LATCHL * $A004

0080 ACCESS * $8BA6
0080 SLASH * $8D3C SLASH IN SYM MONITOR
0080 LOADTX * $8D4F
0080 NHERR * $8D69
0080 SYNC * $8D82
0080 START * $8DB6
0080 RDCHT * $8E28
0080 PACKT * $8E3E
0080 CHKT * $8E78

0000 ORG $0000

0000 00 ID = $00 RESERVED FOR PROGRAM ID

0001 20 A6 8B LOADT JSR ACCESS UN-PROTECT SYSTEM RAM
0004 A0 00 LDYIM $00 SET KIM MODE
0006 20 B6 8D JSR START INITIALIZE
0009 AD 02 A0 LDA DDRIN
000C 29 BF ANDIM $BF BIT 6 = 0 INPUT IS PB6
000E 8D 02 A0 STA DDRIN
0011 A9 00 LDAIM $00
0013 8D 0B A0 STA VIAACR
0016 A9 AE LDAIM $AE SET UP CLOCK FOR GETTR (KIM)
0018 8D 04 A0 STA LATCHL STORE GETTR VALUE IN LO LATCH
001B 20 82 8D LOADTA JSR SYNC GET IN SYNC
001E 20 61 8E LOADTB JSR RDCHT
0021 C9 2A CMPIM '*' START OF DATA?
0023 F0 06 BEQ LOADTC
0025 C9 16 CMPIM $16 NO - SYNC CHARACTER?
0027 D0 F2 BNE LOADTA IF NOT, RESTART SYNC SEARCH
0029 F0 F3 BEQ LOADTB IF YES, KEEP LOCKINT FOR THE *
002B A9 00 LOADTC LDAIM $00 CLEAR "NOT IN SYNC BIT"
002D 85 FD STA MODE

002F 20 28 BE JSR RDBYTX READ ID BYTE

CHANGE THE FOLLOWING IF ID LOCATION IS NOT HEX 0000

0032 C5 00 CMP ID COMPARE WITH REQUESTED ID
0034 F0 02 BEQ LOADTD GO LOAD IF EQUAL
0036 D0 E3 BNE LOADTA UNCONDITIONAL - RESTART SEARCH

0038 20 28 BE LOADTD JSR RDBYTX GET SAL FROM TAPE
003B 20 78 BE JSR CHKT
003E 85 FE STA BUFADL PUT IN BUF START LOW
0040 20 28 BE JSR RDBYTX SAME FOR SAH
0043 20 78 BE JSR CHKT
0046 85 FF STA BUFADH

THE FOLLOWING JSR RDBYT IS THE ONLY INSTRUCTION THAT WOULD HAVE TO CHANGE TO RE-LOCATE THIS PROGRAM

0048 20 67 00 LOADTE JSR RDBYT GET A BYTE INPUT
004B BD 0F BCS XNHERR BRANCH IF NON-HEX
004D 20 78 BE JSR CHKT INCLUDE IN CHECKSUM
0050 A0 00 LDYIM $00 STORE BYTE
0052 91 FE STA IY BUFADL
0054 E6 FE INC BUFADL BUMP BUFFER ADDRESS
0056 D0 F0 BNE LOADTE BRANCH IF NO CARRY
0058 E6 FF INC BUFADH ELSE NEED TO UPDATE HIGH ORDER
005A D0 EC BNE LOADTE UNCONDITIONAL

005C CD 3C BD XNHERR CMP SLASH "/" IN SYM MONITOR
005F D0 03 BNE YNHERR WAS IT REALLY AN ERROR
0061 4C 4F 8D JMP LOADTX NOW LET HIM HANDLE CHECKSUM
0064 4C 69 8D YNHERR JMP NHERR LET MONITOR DO THIS ALSO

0067 20 61 BE RDBYT JSR RDCHT READ ONE HALF
006A CD 3C BD CMP SLASH SEE IF A SLASH
006D D0 02 BNE RDBYTA BRANCH IF NOT
006F 3B SEC SET CARRY AS NON-HEX
0070 60 RTS AND RETURN

0071 20 3E BE RDBYTA JSR PACKT SEE IF GOOD CHARACTER
0074 90 01 BCC RDBYTB BRANCH AROUND RETURN IF HEX
0076 60 RTS

0077 AA RDBYTB TAX SAVE MSD
0078 20 61 BE JSR RDCHT GET NEXT HALF CHARACTER
007B 86 FC STX CHAR SAVE IT HERE
007D 4C 3E BE JMP PACKT CHECK FOR HEX & RETURN
Late in December 1978 my dreams came true. Those dreams I had had in the mid 60's when I first learned how to program computers. I had dreamed of having my own desk-sized computer. That dream has come true to a degree I would not have thought possible then. The computer I now have is not desk-sized but is contained on one printed circuit board. Furthermore, it is more powerful than the big monsters I worked on in the mid 60's. I don't want to bore you with a description of my continual amazement at a computer on a chip for such things are now old hat. Nor do I want to give just a general overview of the Superboard II manufactured by Ohio Scientific. For a general description you may check the March 1979 issue of Popular Electronics, p.76. I want to go somewhat deeper into evaluating and describing the Superboard II (Note: the Challenger II also manufactured by Ohio Scientific is the same computer in a case with power supply).

HARDWARE

KEYBOARD:
The keyboard is mounted directly on the printed circuit board as can be seen in the advertisements. It is a polled keyboard which is polled by writing to a latch addressed at memory location DF00. This latch feeds the rows of the keyboard matrix. When a key is depressed the latch signal is fed through the key switch to a tri-state buffer and back onto the data bus. A read of address DF00 will pick up the signal from the column in which the key is depressed. This method of polling the keyboard makes the hardware very simple (and cheap) but it is effective. In my view a polled keyboard like the one on the Superboard II is better than a hardware implemented ASCII keyboard. Several nice features can be incorporated this way. For example, every key has an automatic repeat feature. You have direct access to every key on the board for gaming purposes. Another keyboard can be put in parallel with the existing one. I plan to add a Hex keypad this way. OSI has provided a jack with several of the keyboard lines on it so that switch type joysticks may be connected for games. For ordinary ASCII input from the keyboard the monitor includes a subroutine which returns the ASCII value of any key depressed. So for all practical purposes this arrangement works just like any other ASCII keyboard. OSI has fed the signal from the keyboard through a resistor network and then out the game jack. This signal may be connected to a speaker to make sounds or music. The only reason I cannot give a further description of this feature is that OSI failed to include the resistors and I haven't yet gotten around to it.

VIDEO DISPLAY:
The video display is elegant and simple from a hardware point of view. The display on the screen is 32 by 32 but has no guard bands. My monitor displays about 27 by 30 screen size. The software supplied with the Superboard uses only 24 character lines since many who buy the Superboard may want to connect it to an ordinary TV through a video modulator. The video display is refreshed from a 1K memory located at DF00:DF3F. Any byte written into this memory gets fed through a character generator and then sent to the screen. The character generator produces not only the full set of ASCII symbols but also more than 100 graphics symbols. It is complete enough to do just about anything you would want to on a 24 by 24 screen: Life, Tic-Tac-Toe, Pong, Racecar, Ship-tank-airplane warfare, etc.

You may wonder about the access to the refresh memory since both the CPU and the video display circuitry must use it. The video display memory is accessed through a multiplexer which is normally connected to the refresh circuitry. This multiplexer allows the CPU to access the memory whenever the CPU addresses any memory from D000:DF3F. This causes a slight blink in the display on the TV monitor but the blink is almost unnoticeable. Even constantly writing to the display memory causes only a slight decrease in brightness and some flicker of the picture. But whoever writes constantly to the display memory anyway? There is no affect at all on the monitor when the CPU is accessing memory other than the video memory.

CASSETTE I/O:
The Superboard comes with a KC standard cassette interface built in. This operates at 300 baud. That is somewhat slow for loading long programs but the slowness is compensated for by the accuracy. I have yet to find a read error. The hardware for the interface uses a Motorola 6850 ACIA to generate serial data. I think that a small change in the clock used for this ACIA could speed up operation but I have not checked this out yet. This 6850 is located at FO00:FOOF in the memory space. The greatest difficulty with the cassette interface is that no provision has been made for motor control. It would have been simple to use the Request-to-Send output from the 6850 for this purpose. I plan to connect the Request-to-Send output to a small reed relay for this purpose.

COMPONENTS:
The board itself is high quality epoxy-glass. It is double sided, through the hole plated. The CPU is a 6502A and so has plenty of reserve. The RAM chips and other support are mostly low power variety. All have recent date codes. The character generator and the BASIC ROM's are masked programmed type but the monitor is an EPROM. I suppose you could reprogram the Monitor to suit some particular need you might have. The schematics are accurate and clear. They are very easy to follow since this computer is not really very complicated. The only complaint I would have is that various sections of the schematic are not labelled as to their function. But with a little study you can figure them out.

FUTURE EXPANSION:
An empty 40 pin DIP socket is provided for expansion. All the important control, address, and data lines are connected to this DIP socket. OSI makes a model 610 expansion board which connects to this DIP socket. The 610 expansion board comes with a timer, printer interface, and disk interface along with room for more memory. I personally plan to go from this DIP socket to a KIM type connector for interfacing but there are many possibilities for expansion including the S-100 bus or OSI's 48 pin bus.

SOFTWARE

The monitor comes in an EPROM at the higher end of memory and contains the interrupt vectors, the keyboard input routine, cassette I/O routines, and a memory access routine which allows you to view or change any memory location. With this capability it is very easy to load machine language programs by hand and then execute them or save them and later load them from tape. One deficiency is the lack of a cassette save routine in the monitor.
The monitor has a load routine but no save routine. I have written a save routine which incorporates a Hex memory dump. (See figure 1) This routine saves data in a format acceptable to the monitor load routine. I have located it at 0222 since this space is unused by the BASIC interpreter. The begin address and the end address of the code to be saved must be entered at 00F7 and 00F9 respectively. When you execute the save routine, be sure to turn on your recorder! The code will be saved on tape as well as displayed on the monitor screen. If you want to use this program as a memory dump just run it without turning on your cassette.

Several important monitor routines as well as some Basic routines are listed in Table 1.

BASIC:
The BASIC in ROM is an 8K Microsoft product. It is called a 6 digit BASIC since only 6 digits of precision are displayed. Internally, however, all numbers are carried in floating point form with 23 bits of precision (actually the precision is 24 bits since a high order 1 bit is assumed). That amounts to 7½ digits of precision internally. Though this BASIC is very good and very fast it is still a BASIC interpreter and allowance must be made for that fact. I have a puzzle that I have programmed in both BASIC and machine language. The machine language program takes about 1½ hours to run to completion. The BASIC program would take over a month! Superboard is what OSI calls its “immediate mode.” That means that any statement can be entered without a line number and it will be executed immediately. Since “?” can be used in place of “PRINT” it is possible to interrogate the computer for any piece of information you might want. For example ? A yields the value of the variable A in the memory. ? 45-20 yields 25. ? PEEK (255) yields the contents of memory location 255 in decimal. GOTO 40 sends BASIC to statement number 40 and begins execution at that point. This last feature is very useful in debugging. One could say that the immediate mode allows you to use the Superboard as a super-calculator and provides a built-in debugger. The BASIC alone is worth the price of the computer.

ASSEMBLER:
There is one available from OSI on tape but I haven't tried it out. I want to write my own and put it in an EPROM.

DOCUMENTATION:
A few words must be said about documentation. Frankly, it is not up to OSI's high quality in the hardware and software areas. The graphics manual is by far the best, providing pretty clear descriptions and giving good examples. The users manual leaves something to be desired in clarity. It is too brief and rather vague at points. I have had real trouble trying to use machine language since there is virtually no description of the machine instructions. I also had some trouble figuring out what pins to connect my cassette to since the diagram is not clearly labelled. The BASIC manual is very brief--admittedly so. OSI expects you to have on hand a BASIC reference manual if you are not thoroughly familiar with the workings of BASIC. One serious problem is an error in the BASIC manual relating to the USR function. It tells you to poke the starting address of the USR routine into locations 023E-023F but this does not work. In the graphics manual there is an example of the use of the USR function. In that example the starting address of the USR routine is poked into 0008-000C. This works. I do wish that manufacturers would supply complete documentation with their software including source code. OSI provides almost nothing in the way of description for either the monitor or BASIC. I have disassembled the monitor and figured it out but have not yet started on BASIC. If anyone has inside information on the inner workings of Superboard BASIC please let us know. Think of all those good routines in BASIC that we could use to memory saving advantage: conversion routines, arithmetic routines, text editor, scanner, etc.

Though I have had to give a few negatives about the Superboard II I am well impressed with the quality of both hardware and software. If you are undecided as to what computer is the best buy for the money, I urge you to send your $279 check to OSI and ask for a Superboard. I don't think there is anything as good for the price on the market.

PROGRESSIVE SOFTWARE
PRESENTS SOFTWARE AND HARDWARE FOR YOUR APPLE

SOFTWARE:

- **Hires Games**
 Missile—Anti—Missile
 Star Wars
 Rocket Pilor
 Saucer Invasion
 Space Maze
 Programs Require 16K rams and rom board

- **Other Program**
 Curve Fit
 Sales Forecasting
 Morse Code
 Calendar
 Polar Coordinate Plot(Hires)
 All Programs.$9.95 EACH

HARDWARE

Neil Lipson's Original Light Pen Includes
5 Programs
$34.95

SEND Check or M.O. to P.O. Box 273, Ply. Mtg., PA 19462
Programs Accepted for Publicaton - Highest Royalty Paid

Postage and Handling—Add $1.00 for first item them 50¢ for each add'l
PA Residents Add 6% Sales Tax

MICRO 11:16
APRIL 1979
OSI CASSETTE SAVE/HEX MEMORY DUMP

BRUCE HOYT
MARCH 1979

TO USE, PLACE THE START ADDRESS OF CODE TO BE SAVED IN 00F7,00F8 AND THEN THE END ADDRESS IN 00F9,00FA. TURN ON THE TAPE RECORDER AND EXECUTE. NOTE: THIS PROGRAM WILL SAVE ITSELF ON TAPE.

0222 ORG $0222

0222 A9 0D START LDAIM $0D CARRIAGE RETURN
0224 20 2D BF JSR $BF2D CRT
0227 20 7A FF JSR $FF7A 10 NULLS TO CASSETTE
022A A9 2E LDAIM $2E "." ADDRESS MODE
022C 20 75 02 Jsr CC
022F A5 F8 LDA $00F8 FROM LOCATION (HIGH)
0231 20 63 02 Jsr AOUT
0234 A5 F7 LDA $00F7 FROM LOCATION (LOW)
0236 20 63 02 Jsr AOUT
0239 A9 2F LDAIM $2F "/" DATA MODE
023B 20 75 02 Jsr CC

023D A2 00 LOOP LDXIM $00
0240 A1 F7 LDAIX $00F7 GET BYTE
0242 20 63 02 Jsr AOUT OUTPUT
0245 A9 0D LDAIM $0D CARRIAGE RETURN
0247 20 B1 FC Jsr $FCB1 CASSETTE OUTPUT
024A A9 2D LDAIM $2D SPACE
024C 20 2D BF Jsr $BF2D CRT
024F E6 F7 INC $00F7 INCREMENT FROM ADDRESS
0251 D0 02 BNE BUMP
0253 E6 F8 INC $00F8
0255 38 BUMP SEC CHECK IF DONE
0256 A5 F9 LDA $00F9 TO
0258 E5 F7 SBCZ $00F7 FROM
025A A5 FA LDA $00FA TO + 1
025C E5 F8 SBCZ $00F8 FROM + 1
025E 10 DE BPL LOOP
0260 4C 43 FE JMP $FE43 YES, RETURN TO MONITOR

0263 85 FC AOUT STA $00FC USE MONITOR DISPLAY
0265 20 AC FE JSR $FEAC TO UNPACK
0268 AD CC D0 LDA $D0CC HI
026B 20 75 02 Jsr CC
026E AD CD D0 LDA $D0CD LO
0271 20 75 02 Jsr CC
0274 60 RTS

0275 20 B1 FC CC JSR $FCB1 OUTPUT TO CASSETTE
0278 2D 2D BF Jsr $BF2D AND CRT
027B 60 RTS

Figure 1
Page 0 Usage
0000 JMP to warm start in BASIC
00FB cassette/keyboard flag for monitor
00FC data temporary hold for monitor
00FE-00FF address temporary hold for monitor

Page 1
0100-0140 stack
0130 NMI vector - NMI interrupt causes a jump to this point
01CO IRQ vector

Page 2
0200 cursor position
0203 load flag
0205 save flag
0206 CRT simulator baud rate - varies from 0 = fast to FF = slow
0212 Control-C flag
0218 input vector = FFBA
021A output vector = FF69
021C Control-C check vector = FF9B
021E load vector = FF8B
0220 save vector = FF96
0222-02FA unused

Page 3 and up to end of RAM is BASIC workspace
A000-BFFFF BASIC in ROM
D000-D3FF Video refresh memory
DF00 Polled keyboard
F000-F001 Cassette port 6850
F800-FFFF Monitor EPROM
FC00 Floppy bootstrap
FD00 Keyboard input routine
FE00 Monitor
FF00 BASIC I/O support

Useful Subroutine entry points
A274 warm start for BASIC
BD11 cold start for BASIC
BF2D CRT simulator - prints char in A register
FD00 input char from keyboard, result in A
FCB1 output 1 byte from A to cassette
FE00 entry to monitor, clears screen, resets ACIA
FE0C entry to monitor, bypasses stack initialization
FE43 entry to address mode of monitor
FE80 input ASCII char from cassette, result in A, 7 bit cleared
FE93 convert ASCII hex to binary, result in A, =80 if bad
FF69 BASIC output to cassette routine, outputs one char
to cassette, displays on screen, outputs 10 nulls
if carriage return character
FF00 Reset entry point
FF8B Load flag routine
FF96 Save flag routine
FF9B Control-C routine
FFBA BASIC input routine

Table 1.
Although KIM-1's ROM contains useful features like the tape and TTY input-output routines, when it comes to inputting data or coding via the keypad, KIM's resident monitor leaves much to be desired, for example the avoidance of repetitive pushing of the "t" between each entry or the ability to look back a few bytes without going into address mode. I would like to thank Jim Butterfield for his excellent BROWSE and BRANCH PROGRAMS which I put together in Page 1 and have used religiously since I got started in this game in mid '78.

However, these have their limitations and I have frequently found the need for a little more sophistication, not to mention the space they occupy in Page 1. Anyway the thing which irritated me most was the need to re-enter a long listing merely in order to open up a few spaces for additional instructions. The process of tidying up a finished program, entailing closing up unwanted spaces and the associated readdressing was also very time consuming.

thus decided to try to write an extended monitor which would be compact enough to fit in Page 17 and yet provide the functions I needed. After much condensing and compressing I ended up with a program 6 bytes longer than the "legal" Page 17 RAM, but by stealing a little from KIM it fits nicely. KIM doesn't seem to mind. As long as you don't use the tape or TTY routines, he leaves you alone.

The NMI vector is loaded with the start address (1780) so that the ST key can be used to access the monitor at any open cell address. Before pressing ST or after exiting via RS the resident monitor is used as a normal in the AD mode. The ST key gives you 6 other modes of operation or functions.

1. **STAND BY MODE [ST]**: This starts the program which then sits looking at the open cell address and its contents, ie. nothing seems to happen. However, any HEX key is stored at the open cell address which each second key stroke increments the address.

2. **INCREMENT [t]**: Big deal! This works just like normal.

3. **DECREMENT [PC]**: This steps the address points backwards exactly the reverse of "t".

4. **OPEN UP MODE [AD]**: Each depression of this key causes one full page of bytes (FF) to be moved one place up starting at the open cell address.

5. **CLOSE UP MODE [DA]**: Each depression of this key causes one full page of bytes to be moved one place back to overwrite the open cell contents. Having made an "open up" or close up move of one or more steps you will, of course, have to fix up all affected addresses. This is not as onerous as it sounds if you use the sixth mode.

6. **BRANCH MODE [GO]**: When a branch instruction is encountered while entering a new program or fixing up an old one, all you need do is press "GO" followed by the actual destination address (low order only). The monitor will calculate the relative address, store it in the open cell and step on to the next cell all in the twinkling of an eye. The user is, as usual, responsible for ensuring that the branch does not exceed the normal half page range.

I hope that this little program will be as useful to others as it is and has been to me.
1787 20 19 1F GETK JSR SCAND LIGHT DISPLAY
178A 20 6A 1F JSR GETKEY CHECK KEYS
178D C5 F3 CMP LAST
178F F0 F6 BEQ GETK
1791 85 F3 STA LAST NEW KEY
1793 C9 13 CMPIM $13 GO ?
1795 D0 02 BNE SKIP
1797 C6 FF DEC MODE PUT IN BRANCH MODE
1799 C9 12 SKIP CMPIM $12 + ?
179B F0 4A BEQ INCPTN
179D C9 14 CMPIM $14 PC ?
179F F0 22 BEQ DECPNT
17A1 C9 11 CMPIM $11 DA ?
17A3 F0 11 BEQ CLOSUP
17A5 C9 10 CMPIM $10 AD ?
17A7 D0 26 BNE INDATA

17A9 A0 FF OPENUP LDYIM $FF LOAD 255(10)
17AB 88 OPENX DEY
17AC B1 FA LDAYIY POINTL LOAD AND STORE
17AE C8 INY ONE CELL HIGHER
17AF 91 FA STAIIY POINTL
17B1 88 DEY
17B2 D0 F7 BNE OPENX NEXT
17B4 F0 CA BEQ START

17B6 A0 01 CLOSUP LDYIM $01
17BB B1 FA CLOSY LDAYIY POINTL LOAD OPEN CELL
17BA 88 DEY PLUS 1
17BB 91 FA STAIIY POINTL STORE IN OPEN CELL
17BD C8 INY THEN UP
17BE C8 INY UNTIL
17BF D0 F7 BNE CLOSY
17C1 F0 BD BEQ START CONE 255 (10)

17C3 C6 FA DECPNT DEC POINTL
17C5 A5 FA LDA POINTL
17C7 C9 FF CMPIM $FF PAGE CHANGE?
17C9 D0 B5 BNE DEC POINTH YES, THEN DEC POINTH
17CD 10 B1 BPL START AS WELL
17CF C9 10 INDATA CMPIM $10

17D1 B0 AD BCS START FALSE START ACTUALLY NO KEY
17D3 20 BB 1F JSR UPDATE ROL 4 BITS FROM A TO INL
17D6 A5 F8 LDA INL
17DB 91 FA STAIY POINTL
17DA C6 FD DEC TEMPX
17DC F0 A9 BEQ GETK ONE MORE KEY
17DE A4 FF LDY MODE IN BRANCH MODE?
17E0 D0 05 BNE INCPTN NO
17E2 18 CLC
17E3 E5 FA SBC POINTL CALC RELATIVE ADDRESS
17E5 91 FA STAIIY POINTL STORE IT IN OPEN CELL
17E7 20 63 1F INCPTN JSR INCPT NEW CELL
17EA 4C B0 17 JMP START RETURN
Have you ever wished that as great as the Apple II computer system is that you were able to load programs by name from a library cassette? Well, with this mini-sized cassette operating system you can stack many programs on one cassette and load the one you want by typing in its name. Great for showing off your system without juggling a dozen or so cassette tapes.

The Cassette Operating System [CASSOS] resides in memory at locations 02C0 to 03FF, where it won't get clobbered by BASIC programs or initialization. Add the optional cassette control circuit, or purchase one of the commercially available ones. (Candex Pacific, 693 Veterans BLVD, Redwood City, CA 94063) and you never need envy the PET for its loading technique again.

Operation

Load the 'CASSOS' tape, which you have created from the assembly listing, just like any other machine language program (2C0.3FFR), then initialize the BASIC pointers by depressing CTRL-B, return. To load a program depress CTRL-Y and RETURN. "PROG?" will be displayed, enter a 1-10 character program name. The cassette tape will be searched and the program loaded if found. "XXXXXXXXXX LOADED" will be output, where XXXXXXXXXXX is the program now in memory. If the cassette control circuit (described later) is present the tape will also be stopped. A line of question marks (?????????) are displayed if the requested program was not found. To write a program to the library cassette enter Yc (Ctrl-Y, "WRITE", and RETURN. Program will be saved under the name requested at PROG? . "XXXXXXXXXX OUT" will be displayed at completion and the recorder stopped. To end a cassette program file enter: Yc, "EOF", RETURN; a special record header will be written. Note that to conserve limited memory space the EOF routine utilizes the program write subroutine so the "XXXXXXXXXX OUT" message should be ignored.

The program is structured such that the last 63 locations of the input buffer is used for display messages, so if more than 191 characters are entered at one time the program will still function, but without messages. The listing as presented was for a 16K system, change location 0358 as follows for a different configuration:

- 2F-8K 6F-24K
- 3F-12K 8F-32K
- 4F-16K 9F-36K
- 5F-20K CF-48K

Program Design

The method by which CASSOS functions is to write a program header block consisting of header ID, program name, and start of the BASIC load. This is followed by the program data itself, utilizing the Apple monitor routines.

A Cassette On/Off Circuit

The following diagram describes a simple circuit for stopping and starting a cassette recorder which has a "remote" plug from the Apple II under program control. The theory involves activating or deactivating the AN3 signal on the Apple game connector. A store to location COSF turns the recorder on and location COSE turns it off. The strobe triggers a transistor which in turn opens a relay and closes the connection to the remote plug, starting the recorder. If your recorder requires an open connection to start tape movement wire the relay normally closed instead of open. It is also possible to add a relay that would interrupt power to the recorder for control if you have no remote capability on your recorder.

All connections were made to a DIP Header which was modified by soldering a 16-pin IC to it so that the game paddles could still be used without modification when the cassette ON/Off circuit was in use. The common 6VDC relay was modified to be triggered by the game connector signals by wiring a 2500 ohm resistance (utilizing a series of resistors connected in series so that the sum is 2500 Ohms) in parallel with the relay coil. If your recorders rewind controls are disabled by the remote jack wire a switch to bypass the transistor between chassis ground and the relay, which will allow the rewind to operate when depressed. If all this is beyond your scope use the purchased control or simply stop and start the recorder manually.

All parts were purchased at a local Radio Shack
6VDC Relay (275-004)
NPN Transistor (2N3368 or equivalent)
1000 Ohm Resistor
2500 Ohm Resistor
Mini-Plug

APRIL 1979
A Cassette Tape Catalog

Shown in exhibit is a short integer BASIC program which when loaded will list all the programs on a CASSOS format library tape. The CASSOS sub-routines are used so the software must be core resident. Just load the program, insert the library cassette into the cassette handler, and type RUN after starting the cassette player.

```
10 N=1: CALL -936: UTAB (10): DIM X$ (1)
20 INPUT "INSERT LIBRARY TAPE AND DEPRESS 'RETURN':",X$
30 POKE -16299,0: CALL -936: GOSUB 300
40 PRINT "FILE # PROGRAM NAME BYTES"
50 PRINT "--------- ------------ -----"
60 CALL 840: CALL -259
70 IF PEEK (688) = ASC("E") THEN 210
80 IF PEEK (688) # ASC("S") THEN 200
100 REM LOAD INTO NON-EXIST MEMORY (800-BFF)
110 POKE 60, PEEK (700): POKE 61, (PEEK (701)+128)
120 POKE 62,255: POKE 63,191: CALL -259
130 PRINT N;: POKE 788,2: POKE 788,177: CALL 785
140 L= PEEK (700)+ PEEK (701)*256
150 L=16384-L:N=N+1
160 PRINT ": ";L: COTO 60
200 GOSUB 300: PRINT "NO EOF MARK"
210 POKE -16290,0: GOSUB 300
220 PRINT "***END OF FILE***"
240 CALL -155
300 FOR I=1 TO 30
305 L= PEEK (-16336)+ PEEK (-16336)+ NEXT I
310 CALL -1059: RETURN

RUN
INSERT LIBRARY TAPE AND DEPRESS 'RETURN'

FILE # PROGRAM NAME         BYTES
--------- ------------ ---------
1DIRECTORY                  544
2BILLBOARD                  238
3R.ROULETTE                530
4COLORBYRD                  185
5HELL0                     280
6BOWLING                   2119
7BOXING                     2636
8TICTACTOE                 3461
***END OF FILE***
```
DAM SYSTEMS by Cmc
A complete system of modules to let your computer listen to the real world.

DAM SYSTEMS PRICE LIST

DAM SYSTEMS components

AIM161 - Analog Input Module
16 8-bit analog inputs - 144 microsecond conversion time -
3 state output - requires one 8-bit computer output port for control and one 8-bit computer input port for data.

AIM162 - Analog Input Module
As above plus greater accuracy - solid state contacts -
no relay switches. Use switch selectable start enable and read.

POWER - Power Module
Serves power for all AIMi modules.

ICON - Input Connector
For connecting analog inputs to the AIM1 - 20 pin card edge connector - soldering.

OCON - Output Connector
For connecting the AIM1 to a computer - 20 pin card edge connector - soldering.

MANMOD1 - Manifold Module
One in place of ICON. Same terminal barrier strips for
connecting analog input connectors - voltage sources etc.
Eliminates the need for soldering. Pins into the AIM1.

ANANAH1 - Analogue Manifold Module
One in place of ICON. Connects DAM SYSTEMS SENSORS to the
AIM1 without soldering - sensor cables just plug in. Pins into the AIM1 or use MANMOD1.

SENSORS
Sensors for temperature, pressure, flow, humidity, level, light, motion etc.

COMPUTER INTERFACES
For the PET, KIM TRS-80 etc. Use in place of OCON.
Eliminates the need for soldering or special construction.

PETMOD - PET Interface Module
Gives two IEEE ports one user port and one DAM SYSTEMS
interface port. Saves wear and tear on the PET's printed
circuit board. Also called the PETMAP.

KIMMOD - KIM Interface Module
Gives one application connector port and one DAM SYSTEMS
interface port.

CABLE "A" - Interconnect Cables
Connects computer interface to AIM1; AIM162; PETMOD; etc.

CABLE A 24 - Interconnect Cables
24 pin cable with interface connector on one end and one
OCON equivalent on the other.

MANDIS1 - Manual and Display Module
TBA

GPIB MOD - GPIB (IEEE-488) Interface
TBA

RS232 MOD - RS232 Interface Module
TBA

XPANDR1 - Expander Module
TBA

DAM SYSTEMS sets

AIM161 Starter Set
Includes one AIM161; one OCON; one ICON and one OCON.

AIM162 Starter Set
Includes one AIM162; one OCON; one ICON and one OCON.

PETSET1a
Includes one PETMOD; one CABLE A 24; one AIM161; one OCON and one MANMOD1.

KIMSET1a
Includes one KIMMOD; one CABLE A 24; one AIM161; one OCON and one MANMOD1.

AIM161 Starter Set
$189.00

AIM162 Starter Set
$259.00

PETSET1a
$295.00

KIMSET1a
$295.00

AIM161 Starter Set
$189.00

AIM162 Starter Set
$259.00

PETSET1a
$295.00

KIMSET1a
$295.00
The Doctor was busy this month and did not get a chance to write up the EPROM Programmer hardware as promised in the last issue. Look for it next time. A couple of people did submit some good info which is printed below. The Doctor encourages such input. Too much is happening with these new computers for anyone person to "know it all", so if you find out something interesting, please drop us a note and let us get the word out.

Corrected AIM SYNC Program

The early AIM User Manuals had a number of mistakes, as is to be expected the first batch. One of the more serious errors was in the listing for the SYN Write and SYN Read programs on page 9-11. The errors have been corrected in later versions of the manual, but for those of you who need the programs, here they are - corrected.

SYN Write Program:

```
0300 20 1D F2 JSR F21D
0303 20 4A F2 JSR F24A
0306 4C 03 03 JMP 0303
```

SYN Read Program:

```
0310 A2 00 LDX #00
0312 A9 CE LDA #CE
0314 20 7B EF JSR EF7B
0317 20 EA ED JSR EDEA
031A A2 00 LDX #00
031C A9 D9 LDA #D9
031E 20 7B EF JSR EF7B
0321 20 29 EE JSR EE29
0324 C9 16 CMP #16
0326 F0 F9 BEQ 0321
0328 D0 E6 BNE 0310
```

Patch for the AIM-DISASSEMBLER

It soon becomes obvious, that the disassembler is extremely paper consuming, because no single-stepping is provided. The following program will save you money and time!

Set F1 (010C) to 'JMP 03D9' and F2 (010F) to 'JMP 03CB'. After loading the desired program address (*), hitting F1 will dissable just this line on the display. To advance, press the space-bar. If you want to modify, use 'I' and the program jumps to the Instruction Mnemonic Entry. The current address will not be changed. 'ESC' brings you back to the AIM-Monitor. With 'F1', the next address will be disassembled 'F2', however, will subtract the last used op-code length from the current address and then disassemble the last entry! It is even possible to disassemble further "backwards", just keep switching from 'ESC' to 'F2'. Of course, a change in the op-code length will bring up some unexpected results, but very soon you'll catch a proper op-code again!

```
03CB AD 25 A4 LDA A425
03CE 18 CLC
03CF E5 EA SBC EA
03D1 8D 25 A4 STA A425
03D4 B0 03 BCS 03D9
03D6 CE 26 A4 DEC A426
03D9 20 24 EA JSR EA24
03DC 20 6C F4 JSR F46C
03DF 20 07 E9 JSR E907
03E2 20 3C E9 JSR E93C
03E5 C9 49 CMP #49
03E7 D0 03 BNE 03EC
03E9 4C 9E FB JMP FB9E
03EC C9 20 CMP #20
03EE D0 F2 BNE 03E2
03F0 AD 25 A4 LDA A425
03F3 38 SEC
03F4 65 EA ADC EA
03F6 8D 25 A4 STA A425
03F9 90 DE BCC 03D9
03FB EE 26 A4 INC A426
03FE 90 D9 BCC 03D9
```

SYM Tape Evaluation

As a result of our telephone conversation on Monday, I decided to look for any possible hardware problems in the SYM Cassette Interface. Some results are shown below. Whether these are related to your cassette problems is unknown. In checking my Sony TC-62, I found an unexpected very slow acting AVC (increases gain very slowly, decreases rapidly). This could cause problems in a level sensitive system as the gain slowly increases during the recording process to a quite large degree.

Submitted by
Gebhard Brinkmann
Koblenzer Str. 1
D-5401 Kaltengers
West Germany

APRIL 1979
All waveforms taken at PIN 3 of the LM311 (U26) with a sync tape generation program running (hi-speed). Audio OUT (HI) is connected directly to Audio In (A-P to A-L).

WAVEFORM A is the normal condition as received (VIM 80630912 E/C0003)
WAVEFORM B is with C14(.0047uF) removed
WAVEFORM C is with C14 removed and C16(.01uF) paralleled with 1uF

CONCLUSION: C16 is much too small and could easily cause the system to become marginal in the presence of noise and normal level variations. C14 has no apparent real value and seems to unnecessarily increase transition time uncertainty. The small value of C16 and the presence of C14 together simulate the waveform degradation of a very limited bandwidth recorder. Their effect augment rather than compensate for the deficiencies of a recorder. Surprisingly, it appears that it would be a recorder with poor low, rather than high, frequency response which would be most likely to have problems with C16 is maintained at its original .01 microfarad value.

Submitted by
Don Lloyd
101 Western Ave., Apt. 76
Cambridge, Ma. 02139

Synertek has finally solved the sensitivity problem which has been of concern to users of the tape cassette, according to a spokesman from Synertek Systems. I have sent them a pair of 2716 EPROMs to be programmed with the new monitor. If these are returned in time, I will make a full report in next month’s issue.

Comments on Synerktek BASIC (8K) V1.1
1) 2 ROM’s, U21, U22, C000-DFFF, (J) (0) (CR to start BASIC
2) Commands - CLEAR, LIST, NULL, RUNN, NEW CONT, LOAD
"A", SAVE "A"
3) Statements - DATA, DEF, DIM, END FOR, GOTO, GOSUM, IF...
GOTO, IF...
THEN, INPUT, LET, NEXT, ON...
GOSUM, POKE, PEEK, PRINT, READ, REM, RESTORE, RETURN, STOP, WAIT.
4) Functions - ABS(x), LIMIT(x), RDYN(x), SGRO(X), TABS, TAB
USR(I), USR(I,...,Z), EXP(X), FREA(X), LOG(X), POS(I), SPC(I)
SIN(X), COS(X), TAN(X), ATN(X) all must be loaded separately - App Note 53-SSC not quite available
5) Strings - DIM AS, LET AS, INPUT XS, READ XS, PRINT XS
6) String Functions - ASC(X$), CHR$(I), FREA(X), LEFT$(XS, I)
LEN(X$), MID$(XS, I), MID$(XS, I, J), RIGHTS
(XS, I), STRS(X), VAL(X$)
7) Operators =, +, - exponentiation, *=, /=, (not equal), >=, (LTE), (GT), NOT, AND, OR
8) Uses Memory from O200 HEX up until ROM or no memory, unless restricted at start up
9) Weaknesses - Only editing is delete line, delete last character (RUB-OUT), no ROM TRIG, no program merging capability.
10) Strengths - Good array features (but no MAT functions), 9 digit accuracy floating points
4 byte floating point numbers
7 bits + 1 bit sign exponent
1 bit sign + 24 bit binary value (%MS bit = 1 always)
& "000F" = 15 decimal
hex string conversion to decimal
USR(I,J,...Z) Machine language subroutine multiple parameters on stack result (A,Y)
Speed is comparable to OSI Kilobaud Oct '77 ratings (1MHz)
Overall subjective by infrequent BASIC user: 7.5/10 seems appropriate to overall product.

Submitted by
Don Lloyd
101 Western Ave., Apt. 76
Cambridge, Ma. 02139
DR. DALEY’S SOFTWARE FOR THE PET

DR. DALEY’s software continues to expand offerings. Listed below are our most popular programs. No PET owner should be without these. Dealers, you should stock them as well.

PET TREK 3

Like STARTREK, but has several UNIQUE features. For example, the unpredictable EXPERIMENTAL RAY, who knows what it will do ... $ 7.95

BACKGAMMON

It’s you vs the PET with an exciting game of BACKGAMMON ... $ 7.95

MASTER MIND

Plays two simultaneous games, one where you guess PET’s secret code, and another where PET guesses yours $ 7.95

RENUMBER

Will renumber your BASIC programs, including all jump statements. For a 6K source code requires less than 5 seconds .. $12.95

PILOT

A BASIC coded PILOT interpreter. A second high level language for the PET. Simple to use, even a ten year old can learn to use PILOT quickly. With sample PILOT programs and documentation .. $12.95

CHECKBOOK

Will balance your checkbook and save totals in 16 categories on tape. Will produce end of month and year to date summaries. Categories can easily be changed to suit your own purposes... $12.95

MAIL LIST

Keeps a mailing list and will sort the list into sub groups using up to three search parameters .. $12.95

All of our programs are available on tape or for the Compu-Think disk. We charge $5.00 for the disk and shipping, but you can subtract $1.00 for each program which we place on the disk. Order 5 programs and you get the disk free!

MAIL LIST

The above program has been modified for disk files. Will be placed on a disk by itself which you can then use for your mailing list .. $19.95

FLASH!

We have just acquired the rights to distribute a linking loader for BASIC programs! This will allow you to link exclusively numbered BASIC subroutines in memory. No serious programmer should be without this useful programming tool .. $12.95

An ideal companion to the linking loader will be our library of useful subroutines which can be linked into your own program. Currently over 25 useful routines are included. These range from plotting utilities to a beautiful display of rolling dice. Write or call for a list or order the set for only .. $49.95

Remember that we GUARANTEE that your order will be shipped within four business days from receipt or you will receive a coupon for a discount on a future purchase.

Charge your order to MC/VISA

DR. DALEY, 425 Grove Avenue, Berrien Springs, Michigan 49103

Phone (616) 471-5514 Sun. to Thurs. noon to 9 p.m. eastern time
The best memory board around.

Here's why

- Low power 2114 Static RAM's
- Fully buffered
- High quality IC sockets
- All switches accessible from top of board
- Top grade glass fiber PCB, with gold plated contact area.
- Dual regulators
- Two independent 8Kx8 memory banks
- One supply only, 7-9V unregulated

16K Static RAM $325.00
Assembled only.

Designed specifically for the: KIM-1, SYM-1, AIM-65.

Specifications: Access time 450 nS max.
Power consumption 1.35 amp. typ.
Also available: Buffered Mother Board, EPROM Programmer, CVT Power Supply. Software:
Standard Forth Compiler, Sea-65 Editor/Assembler.

Order from local dealer or directly from:
SEAWELL MARKETING INC., 315 N.W. 85th, Seattle, WA 98117 • (206) 782-9480
Available in Europe. Write for dealer list.
Name: Slow-Scan Television Package
System: Apple II
Memory: 16K (min)
Language: Machine Language
Hardware: Standard Apple II
Description: This software system allows the Apple II to send and receive U.S. amateur standard slow-scan T.V. pictures (120 line-15 Hz) via any ham radio SSB transceiver. A real-time display of the received picture in high-resolution graphics is accomplished with a sophisticated image processing algorithm. Low-resolution images for transmission are prepared with a large-character display editor as well as a drawing editor. All modulation and demodulation of the audio FM subcarrier is performed by the software — replacing hundreds of dollars of hardware required by other SSTV systems. Comes on cassette with 8 mins. of test pictures.
Copies sold: about 100
Price: $20.
Includes: Cassette tape and 5 pages of documentation.
Author: Chris H. Calfo — WB4IMD
Available from:
C.H. Calfo
602 Orange St
Charlottesville, VA 22901

Name: S-C Assembler II (disk version)
System: Apple II with at least one disk
Memory: 24K or more
Hardware: Apple II, Disk II, optional printer
Description: Disk version of the popular S-C Assembler for the Apple II. Combines a text editor and an assembler in one memory resident package of 3072 bytes (1000-1BFF). Carefully integrated with the Apple II ROM-resident routines, and with Apple DOS. Editor includes full screen-editing, BASIC-like line number editing, tab stops, and renumbering. LOAD and SAVE commands for storage of source programs on disk files or cassette. JOIN command for appending two source programs from cassette. Standard Apple II syntax for opcodes and address modes. Labels (up to 6 characters), arithmetic expressions, comments in a liberated line format. English language error messages (not coded numbers). DOS and Apple Monitor commands directly available within the assembler. Speed and suspension control over listing and assembly. Includes printer deiver for Practical Automation printer, with instructions for modification to any other printer. (Cassette version is still available: it has fixed line format and labels up to four characters.)
Copies: Over 200 of cassette version, over 25 of disk version.
Price: $35 for disk version, $25 for cassette version (Texas residents add 5% sales tax)
Author: Bob Sander-Cederlof
Available from:
S-C SOFTWARE
P.O. Box 5537
Richardson, TX 75080

Name: STAT III
System: Commodore PET
Memory: 8K
Language: BASIC
Hardware: Standard PET
Description: STAT III accepts a set of numbers and calculates the following: mean, median, mode, highest number in the data, lowest number in the data, range, variance, standard deviation, average deviation, and sample standard deviation. STAT III can display a bar graph of the users data on the CRT. In addition the user may correct errors in his inputted data before processing.
Copies: Just released
Price: $7.95
Includes: Cassette, source listing (program is self documenting)
Author: Michael J. McCann
Available from:
THE PET PAPER
P.O. Box 43
Audubon, PA 19407
Name: Apple Pi 'Life'
System: Apple II
Memory: 4K
Language: BASIC and assembly
Hardware: Apple II with 2 operable game paddles with switches.
Description: Apple Pi 'Life' allows variable grid sizes from 8X8 up to 40X40 in increments of 1. Paddle 1 is only read when the switch is depressed. Speed is controlled by paddle 0 and can be varied from 550 gpm to 2000 gpm for an 8X8 grid. For a 40X40 grid, speed can be varied from 25 gpm to 140 gpm. The speaker is toggled each time a cell is processed, except at minimum or maximum speed, to give the sounds of 'Life'. The bottom of the grid wraps around to top of grid, and vice-versa. The right of the grid wraps around to left of grid, and vice-versa. There are three tables of pre-defined objects which can be setup on the grid by number and x,y location. A description of the object table structure is given in the documentation. Keyboard controls are: P-pause until next P, Z-zero grid and setup objects, O-setup objects on grid, N-new colors, and E-exit program. Any two distinct colors may be used for live and dead cells.
Copies: New, just released.
Price: $12.00. Texas residents add sales tax.
Includes: Programs, object tables on cassette, documentation.
Order Info: Checks only.
Author: Harry L. Pruetz
Available from:
 Microspan Software
 2213A Lanier Drive
 Austin, TX 78758

Name: Amateur Radio Communications Package
System: Apple II
Memory: 8K (min)
Language: Machine Language and Integer BASIC
Hardware: Apple II and user provided interface
Description: This software package allows the Apple II to communicate in any of three codes: Morse, Baudot, or ASCII, with a minimum amount of external hardware required. Some features include: Variable size text buffer and live keyboard allow preparing text for transmission while receiving or transmitting; 3 field screen display — each field scrolling separately; user defined stored messages are referenced by a keyboard and can be inserted anywhere in the text; automatic 72 character line formatting with word wrap-around; continuously variable code speeds; adaptive Morse receive and lots more! All I/O uses the on-board (game) I/O connector.
Copies sold: over 100
Price: $18.
Includes: Cassette tape and documentation with sample interface.
Author: Chris H. Galfo - WB4JMD
Available from:
 C.H. Galfo
 602 Orange St.
 Charlottesville, VA 22901

This Catalog is a FREE feature of MICRO. Your entry must be typed, must conform to the standard format, and Applications/Utilities will be given preference over Games.
SYM-1 6522-BASED TIMER

John Gieryic
2041 138 Avenue, NW
Andover, MN 55303

Your SYM-1 comes with a number of timers capable of a wide range of timing intervals. Unfortunately the SYM REFERENCE MANUAL does not provide information which can easily be digested by a novice. I'd like to attempt a more down to earth description of timer 1 on the Versatile Interface Adapter 6522 for those of us who aren't hardware inclined. This timer is capable of very accurate time delays in the range of fractions of a second. It has an interrupt associated with it plus the ability to generate evenly spaced interrupts.

Setting Up The Interrupts

The first step in programming this timer is to place an address in the Interrupt Request Vector [IRQ] located at address A67E and A67F. A67E contains the low byte of the address and A67F contains the high byte. This address in the IRQ is the location you will be "jerked to" when the timer times down and generates an interrupt. Your code will be as follows:

Location Code
200 20 B6 BB JSR ACCESS disable memory write protect
203 A9 00 LDA #00 interrupt address
205 8D 7E A6 STA A67E Low byte
208 A9 03 LDA #03
20A 8D 7F A6 STA A67F High byte

Our next step is to set two locations so the hardware can "see" the interrupt and tell us where it is coming from. These two locations are the Interrupt Flag Register [IFR] at location A00D and the Interrupt Enable Register [IER] at location A00E. The IER controls interrupts from 7 different sources on the 6522. We will only be interested in bit 6. This is the one for our timer T1. We must set this bit to a logic 1. This tells the 6522 we will accept interrupts from timer T1. The code follows:

Location Code
212 AD OD AO LDA AO0D
215 29 BF AND #BF
217 BD OD AO STA AO0D

When we do get an interrupt from any of the enabled 6522 devices (bit = 1 in the IER) then bit 7 in the IFR and the corresponding bit in the IFR will both be set to a logic 1. We can determine if this interrupt came from the 6522 by just looking at bit 7 of the IFR (ASL followed by a test of the C bit). If bit 7 is a logic zero then the interrupt came from some other place. This will save some time when we are trying to find out where this interrupt originated. You should log this bit 7 information in the back of your mind since I won't use it here.

Setting Up The Timer

One more step before starting our timer. I'm going to set our timer to the free running mode. This means it will count down, give an interrupt and then immediately begin counting down again. I won't need to worry about instruction cycle times within any timing loops. I know I will get repeated interrupts at the exact interval requested. Setting the Auxiliary Control Register [ACR] bit 7 to a logic 1 establishes the free running mode.

Location Code
21A A9 CO LDA #CO
21C BD OB AO STA AO0B

Now we have the four mechanical steps finished...setting up the IRQ, IFR, IER and ACR. Setting the time delay is next. The T1 timer has two latches (high and low order) and two counters (high and low order). This results in a 16 bit counter. The low order latch is loaded first. In this example I will set up for a delay of .05 seconds. This corresponds to a count of C350 (one count for each microsecond).

Location Code
21F A9 50 LDA #50 load low order latch
221 BD 06 AO STA A006
Now we will load the high order latch with the value C3. This instruction will do more than load the high order latch. It will also write the high order latch into the high order counter as well as write the low order latch into the low order counter. This one instruction will transfer all 16 bits from the latches to the counter at the same instant. Without this hardware assist we would be unable to load the counter accurately since the counter begins to count down immediately after being loaded.

Method 2

Method 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>A9 C3</td>
<td>LDA #C3 load high order latch</td>
</tr>
<tr>
<td>226</td>
<td>8D 05 AO</td>
<td>STA A005</td>
</tr>
</tbody>
</table>

The timer is now running and will generate an interrupt .05 seconds (C350) later. This corresponds to 50,000 clock cycles. If you were programming a clock your remaining code at location 229 would now initialize your hours, minutes and seconds counters, initialize the display buffer and then go into a tight loop calling SCAND in order to illuminate the LED's.

Servicing The Interrupt

Our interrupt routine at location 300 is now executed when we receive the interrupt. The first thing we must do is SAVE the processor status and registers. This is done so we can restore these items when we are finished with our interrupt processing and jump back into SCAND from where we were “jerked out.”

<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>08 PHP</td>
<td>save processor status on stack</td>
</tr>
<tr>
<td>301</td>
<td>48 PHA</td>
<td>save accumulator on stack</td>
</tr>
<tr>
<td>302</td>
<td>8A TXA</td>
<td>transfer X to A</td>
</tr>
<tr>
<td>303</td>
<td>48 PHA</td>
<td>save X register on stack</td>
</tr>
<tr>
<td>304</td>
<td>98 TYA</td>
<td>transfer Y to A</td>
</tr>
<tr>
<td>305</td>
<td>48 PHA</td>
<td>save Y register on stack</td>
</tr>
</tbody>
</table>

If you were programming a clock you would now increment a counter. If the counter equalled twenty then reset it and increment the time in the display buffer by one second.

Now the interrupt is “serviced.” In order to clear the way for the next interrupt, the T1 interrupt flag must be reset otherwise the next interrupt will be blocked. This clearing can be done in either of two ways. Method 1 will write into the high order latch. This write uses a different address for the store instruction than the write used to initialize the timer counter. In doing this the T1 interrupt flag will be reset but it will not disturb the current value in the counter. Remember this is a free running counter in our example and automatically resets itself when the interrupt occurred. By this point in time it has already counted down from its original value of C350 toward zero (and the next interrupt). Method 2 will read the low order counter. Either method will reset the T1 interrupt flag.

Method 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD 04 AO</td>
<td>LDA A004</td>
</tr>
</tbody>
</table>

Now the processor status and registers can be restored and a return executed to the location in SCAND at which the interrupt occurred. Remember you must restore the registers in the exact reverse order used at the entrance to the interrupt routine. This is a major point.

Servicing The Interrupt

Location Code

<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>A9 C3</td>
</tr>
<tr>
<td>226</td>
<td>8D 05 AO</td>
</tr>
</tbody>
</table>

That's the end of the lesson for today. In a future article I will use the information presented here to develop an operating system for your SYM-1.
JUST THINK OF IT!

YOUR KIM-1 — No longer limited to those long cassette saves and loads.

YOUR KIM-1 — Backed up by 8K static ram so conservatively designed, well manufactured and thoroughly tested, HDE includes a no-nonsense, unconditional, 6 months parts and labor warranty. (Excluding misuse).

YOUR KIM-1 — Transformed into one of the most powerful 6502 development systems available today.

HDE, INC. supports the KIM-1 with 8" and 5" single and dual drive disk systems, prototyping cards, card racks, desk top cabinets, motherboards, and the finest memory board available, anywhere, at any price.

AND THIS IS JUST FOR STARTERS . . .

Consider: A fast, 2 pass assembler; a complete line oriented editor; a comprehensive text output processing system; an efficient dynamic debugging tool; and, a memory diagnostic package so thorough it's the basis of our memory warranty.

Plus, after the sale support that you've known you deserve, but just couldn't seem to get — until now.

And, HDE products are KIM-1, KIM-4 compatible. All boards include an oversized 5 volt regulator and address selection switches, in a state-of-the-art 4.5" X 6.5" format, designed, manufactured, and tested for commercial/industrial application.

HDE products — built to be used with confidence.

AVAILABLE FROM THESE FINE DEALERS:

JOHNSON COMPUTER
Box 523
Medina, Ohio 44256
216-725-4560

PLAINSMAN MICROSYSTEMS
Box 1712
Auburn, Ala. 36830
800-633-8724

ARESCO
P.O. Box 43
Audubon, Pa. 19407
215-631-9052
As a computer hobbyist who wanted a video interface for his KIM-1, it took me a long time to decide which video board of the many available to choose. The main factor which influenced my decision was the prohibitive cost of most video interfaces, typically around $150 to $200. Being on a college student's budget, these prices were way out of my range. I was beginning to lose all hope when, at the PCC '77 in Atlantic City, I discovered the TVT-6, a video board for the KIM-1, for only $35!

After mulling it over for a few days ($35 is still a lot of money!) and weighing the board's strengths and weaknesses, I decided to order a TVT-6 kit from PAIA Electronics. I received my kit in about 2 weeks and built it in one night. The construction was fairly easy, although it may have been slightly more difficult for someone with no construction experience. This was due mainly to the fact that the instructions consisted of a reprinted construction article from a magazine. The board worked the first time I hooked it up except for a capacitor which I found out later, after a call to PAIA, had to be a slightly lower value. The effect of the bad capacitor was to widen the characters on the screen to the point that they interfered with each other. I must mention that the Technical Services Dept at PAIA was very helpful and sent the correct value capacitor to me within a few days.

I must say that Don Lancaster's TVT-6 design is truly amazing but, due to the fact that it uses the 6502 for its timing, it has a few drawbacks. In the remainder of this article I will try to describe the TVT-6's strengths as well as its weaknesses as I see them, having used this video board for over a year.

The main weakness one encounters using the TVT-6 is the fact that the display disappears whenever the display program is not running. When using an interrupt, such as an ASCII keyboard, the problem is not as apparent as when implementing another routine which is relatively long in execution time. Also, if the display program is repeatedly called as a subroutine from another program, a noticeable jitter in the display results, which can be very annoying. A good example of this would be trying to play a 'pong' type game on the screen.

Another minor annoyance is that the display program must be loaded from tape every time the computer is powered up before the display will work. Also, for KIM owners without expansion memory, pages 2 and 3 of the KIM RAM cannot be used for program space without garbage showing on the screen.

One drawback is the fact that memory locations $8000 through $DFFF are used by the TVT-6 scan PROM and cannot be used for expansion memory.

Most of the above weaknesses may seem pretty important at first, but in fact they are not, and there are ways of getting around them. Since the screen flickers when called repeatedly by another program, such as a disassembler listing, I simply have the disassembler fill the screen before calling the display routine, thus displaying whole pages at a time.

Though locations $8000 through $DFFF cannot be used for expansion memory, this still leaves space for 36K of expansion, which I feel is more than enough for the average KIM owner.

Now that I have outlined the weaknesses of the TVT-6 and some ways of getting around them, I will describe its strengths, which, I feel, far outweigh the disadvantages.

The most outstanding advantage of the TVT-6 is its $35 price tag. As far as I know, no other video board even comes close to that price range. Add to that its lower power consumption, (I have used the KIM 15 volt supply to power the KIM and the TVT-6), its small size, variable display size, and software cursor control, and you have what I believe is one of the biggest hardware buys around. Above all, I think that the TVT-6 display is one of the cleanest and sharpest that I have seen!

In conclusion, I must admit that if you can afford to lay out $200 for a video interface, then one of the more expensive boards may be what you need. However, if you're looking for a video board that works great and won't empty your wallet, the TVT-6 is definitely for you!

Editor's Note: One important disadvantage which is not mentioned above is that of using the TVT-6 with existing software. If you are planning to write all of your own code, this is no problem. But if, more typically, you are going to use software which was written by others without a TVT-6, you may encounter serious problems. Some packages may be very difficult to interface to the TVT-6; others may be impossible due to timing considerations. The TVT-6 is a remarkable illustration of what can be done with a 6502 and may be a total solution for some applications. But, it may not be adequate in other applications. For a lot more information on the TVT-6, you should consult (buy?) The Cheap Video Cookbook by Don Lancaster, 1978. This book is published by Howard W. Sams & Co., Inc., 4300 West 62nd St., Indianapolis, IN 46288 and retails at your local computer shop for $5.95. This is a good tutorial on videos whether or not you intend to buy/build the TVT-6, but is not for the complete novice.

For a catalog/price list on their line of cheap video pc boards, kits, etc., contact:

PAIA Electronics
1020 West Wilshire Blvd.
Box 14539
Oklahoma City, OK 73114
405/842-5480
6502 BIBLIOGRAPHY

PART X

William R. Dial
438 Roslyn Avenue
Akron, OH 44320

429. Recreational Computing 7 No 4 Iss 37 (Jan./Feb. 1979)
 Carpenter, Chuck “APPLE II Easy I/O Sensing and Control”. I/O control using the Apple II game connector.
 Wells, Arthur Jr. “Some New Uses for Apple II”. Debugging PONG, use of Modem, etc.
 Shanis, Daniel “Breaking Trail in Alaska with Apple II”. A project using 32K Apple II computers with diskettes in 9 remote village schools.
 Swenson, Carl “Building a HI-RES SHAPE TABLE for the APPLE II”. Here’s a way to create your favorite shapes.
 Saal, Harry “SPOT”. Tips for the PET Owners. A machine language tape with two BASIC programs is available from Commodore. Also a manual on communication with the outside world. A PET SERVICE KIT from Commodore includes schematic diagrams and parts lists, a diagnostic jumper connector with diagnostic tapes, etc. Information on the “lost cursor fix”. Head Alignment.

430. MICRO No 9 (Feb., 1979)
 Reich, Dr. L.S. “Long Distance Interstate Telephone Rates”. An Applesoft II program for phone rates which can be modified for PET or OSI computers.
 Bullard, GARY J. “The Sieve of Eratosthenes”. A prime numbers BASIC program for the PET.
 Hertzfeld, Andy “Exploring the Apple II DOS”. Useful information for disk users.
 Dejong, Marvin L. “6502 Interfacing for Beginners: An ASCII Keyboard Import Port”. Shows a system for the KIM with both polled or interrupt methods of service the device.
 Tater, Gary L. “Two Short TIM Programs”. One program provides a method for communication with TIM at 1200 BAUD or higher. Another offers a TIM Operating System Menu.
 Tripp, Robert M. PhD “Ask the Doctor Part VIII”. A comparison of the KIM, SYM and AIM microcomputers.
 Rowd, Mike “The MICRO Software Catalog: V”. Reviews of about one dozer programs for 6502 based systems.
 Rittimann, Russell “Expand Your 6502-Based TIM Monitor”. A modification of the TIM system to expand the command set so that ROM resident programs or routines can be executed from within TIM.
 Dial, Wm R. “6502 Bibliography— Part VIII”. The 6502 literature continues to expand.
 Herman, Harvey B. “How Does Your ROM Today”. Programs and techniques for testing the KIM and PET ROMs.

431. CONTACT Newsletter No 4 (Dec. 1979)
 Anon “Apples work PIA’s”. A note to the effect that the problems reported earlier by END magazine on the apparent incompatibility of the Apple with PIA’s have been resolved and that EDN now believes this long saga must have had its source in human error. (See EDN Magazine, Sept. 20, 1978)
 Anon “The Colon as a Listing Formatter for Applesoft”. How to indent your listings for neatness and easy reading.
 Annon “Disk Operating System Notes”. Includes Notes on Data Format, Using Random-Length Records, Using Fixed-Length Records, Append Files, DOS Error Codes, Getting Commas into Applesoft, etc.

432. Dr. Dobb’s Journal 4 No 32 Issue 2 (Feb., 1979)
 Carpenter, Chuck “Reset Adapter”. How to avoid accidental loss of programs involving the reset button on the Apple II
 Prigot, Jonathan M. “Loading Kim’s Cassettes”. How to load OSI cassettes into the KIM.

433. Byte 4 No 2 (Feb., 1979)
 Libes, Sol “Byte News”. Atari has two new 6502 based computers. According to the latest sales reports, more 6502 microprocessors are being manufactured than any other uP. Most of the volume goes to high volume game use.
 Mathews, Dr. Randall S. “An Apple and the Queens”. An Eight Queens program for the Apple.
 Raskin, Jef “Unlimited Precision Division”. A BASIC program for unlimited integer division.

434. Kilobaud No 26 (Feb., 1979)
 Green, Wayne “Publisher’s Remarks”. A review of OSI’s new units the Ip and IIP Challengers.
 Lindsay, Len “PET Pouri”. Accessories for the PET include a voice input module, a sound output module, Joysticks, a digital plotter, a light pen, and an S-100 adapter for the PET. How to add sound to your PET and sound programming instructions. New languages to supplement Basic are PILOT and PETFORI. New sources of information on the PET are the PET Manual and a manual called PETABLE, as well as a newsletter called Sphinx. Programming tips cover the GET, ON...GOSUB, and others. A new wrinkle for recovering programs from faulty tapes is given.
Flogel, Ekkehard "Apple and the PIA". Contradicting the troubles reported by EDN magazine, a board was developed with a PIA 6520 on it to put an Apple II and a KIM together. Programs can be sent from one unit to the other and vice versa.

Price, David "Music, Maestro". The AD8 is a computer-controlled synthesizer system using a 6502 microprocessor and a 6820 I/O port.

Bishop, Robert J. "The Apple Speaks...Softly". Apple II Voice digitizer.

435. Calculators/Computers Magazine 3 No 1 (Jan./Feb., 1979)
Day, Jim "High-Resolution Apple Art". Applesoft II program for various shapes. Albrecht, Bob and Karl "PET BASIC for Parents and Teachers". PET Conventions in a simple animation program.

436. 73 Magazine No 221 pg 21 (Feb., 1979)
Birman, Paul "Petting". How to find the end of a program on tape when you want to load a new program into your PET.

437. Personal Computing 3 No 2 pg 63-74 (Feb., 1979)
Gerue and McNeil, "Chess Challenger-10 Wins Microchess Tourney". Microchess 2.0, Peter Jennings entry, took fourth place. This is 6502 based.

437. Creative Computing 5 No 1 (Jan., 1979)
Yob, Gregory "Personal Electronic Transactions". New products described are Expandapet memory, PET ROM disassemblies, a useful book on what the PET rom is all about, Some data on the User Port, PET Video Slave display, Exploring PET random numbers, PET sounds and music, etc. Wells, Ralph "HOW about a 'Counterfeit Cursor' For your PET?". Enables one to use the cursor in games or under better control.

Heuer, Randy "Ohio Scientific Superboard II and Challenger 1P". A review of OSI's new lost cost micro.

Rugg and Feldman "Speed Reading Made Easy...via Your PET". This program turns your computer into a tachnioskope to teach improved reading habits.

Milewski, Richard A. "Apple-Cart". All about Data Files on diskettes. Simple file accessing statements, Sample serial access programs, and some software reviews.

NOW AVAILABLE

Basic Software

For SOL-IIA and PET-8K

<table>
<thead>
<tr>
<th>General Pack 1</th>
<th>Game Pack 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Checkbook Balancer, Tic Tac Toe, Metric Conversion)</td>
<td>(children - educational)</td>
</tr>
<tr>
<td>$10.95</td>
<td>(Arithmetic God, Addition Dice, Distance = Rate X Time)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Pack 2</th>
<th>Tape Data Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Space Patrol, Biorhythm, Battlestar, One-Armed Bandit)</td>
<td>(File Management System) - For the KIM-1</td>
</tr>
<tr>
<td>18.95</td>
<td>50.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial Pack 1</th>
<th>PCROS - a Real-Time Operating System in 1K KIM RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(loans, Depreciation, Investments)</td>
<td>Assembly listing</td>
</tr>
<tr>
<td>12.95</td>
<td>24.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial Pack 2</th>
<th>Game Pack 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mortgage & Loan Amortization, Future Projections, Risk Analysis)</td>
<td>(Basketball, Object Removal, Bowling, Darts, Gopher)</td>
</tr>
<tr>
<td>12.95</td>
<td>22.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics Pack 1</th>
<th>Game Pack 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mean & Deviation, Linear Correlations & Regression, Distribution, Contingency Table Analysis)</td>
<td></td>
</tr>
<tr>
<td>18.95</td>
<td></td>
</tr>
</tbody>
</table>

Send self-address, stamped envelope for complete software catalogue.

Send check or money order to:

H. GELLER COMPUTER SYSTEMS
Dept. M
P.O. Box 350
New York, New York 10040
(New York residents add applicable sales tax)
This article can be of help to the BASIC programmer in providing a
fast, fool-proof renumbering system, but it also includes details on
how to use the PET BASIC interpreter's own machine-language
routines to do some useful chores.

Renumbering programs written in BASIC, such as Jim Butterfield's
(see MICRO Dec 78 - Jan 79) are very slow in renumbering long
programs, and because BASIC is cumbersome in performing such
routine chores, the machine-language approach has some major
advantages. This routine will renumber a 300-line program in
around 20 seconds, as compared to more than 300 seconds for
Jim's BASIC version. Further, Jim is forced to duck the issue of
providing space for extra-digit line numbers, whereas by calling
BASIC's line insertion routine, this program provides enough space
for five digits for every GOTO, GOSUB, etc.

The entire program for renumbering is given in hexadecimal in
listing 1. More later about how to enter it into your machine. With
your BASIC program and the renumber routine in RAM, press
SY8181 (by coincidence, the name of the program) and you will
either get a message of reassurance that all has gone well, or will
get an error message, such as "line too long". In no case will the
program bomb, because this is a two-pass program; during the first
pass, nothing is done to the Basic text, other than making sure
there is enough space for five-digit line numbers. If any problem
exists, the BASIC text is unchanged.

DEVELOPING THE PROGRAM

Commodore made it a formidable task to decipher the code of
BASIC sufficiently to be able to make patches for a short renumber
system. The first obstacle is that the PEEK statement is disabled for
the area of memory where BASIC resides. But, by sleight-of-hand, a
little PUNCHing and POKEing and addition of a simple output port
on PET's memory-expansion connector, the PET disgorged the
contents of its ROMs into my homebrew machine and onto a disk;
now, with the capability of having the programs in RAM, where
breaks could be inserted for diagnosis, the job became a little
easier.

Programming a renumber routine is made tedious by the fact that,
in the BASIC text, the line numbers following the GOTO tokens are
coded in ASCII, whereas the line numbers at the beginning of a
line of text are coded as two-byte hex numbers. Fortunately, the
BASIC interpreter has routines built in to do these conversions
back and forth between ASCII and hex. The locations of these and
other routines called by this program are given in TABLE 1.

Another problem encountered was locating some page zero
registers, essential to 6502 programming, which are not altered by
other routines called by this program. Further, Jim's BASIC version
is long, it may take 3-4 seconds to complete the renumbering job.

When the program is listed or run, the need for correction is obvious.
While we are searching for a matching line number, we keep track
of the new line number which corresponds to the current position
in the text, so that when the match is found, the new line number
can be converted to ASCII and placed directly into the text.
The actual resequencing process which follows is an anticlimax,
because it requires so little coding (1E16-1E3E). When the entire
renumbering job is done, we jump back to BASIC's warm start
date.

USING THE PROGRAM

If you would like to renumber your program with the standard
starting line number 100 and increment by 10, simply type
SY8181, which directs the program to hex address 1FF5. If you
would like to choose a different starting line number or increment,
POKE the desired values at the addresses shown in LISTING 2, and
type SY8184 to enter the program at 1FF8. If your BASIC program
is long, it may take 3-4 seconds to complete the renumbering job.

After renumbering, running the program will generally write over
the renumber code, since it occupies the same space as some
BASIC variables. The only precaution to be taken in renumbering
is to avoid line numbers which exceed PET's limit of 63999.
ROUTINE ENTRY POINT (HEX) FUNCTION AND IMPLEMENTATION

C359 Print an error message from the message table. Enter with X containing the location of the message relative to C190. Message terminator is ASCII having bit 7 on.

1F00 A duplicate of the original BASIC line insertion routine located at C3B4, except for the exit jump. Enter with the line assembled in the line buffer 000A-0059 with 00 as line terminator. Also, the character count must be in 005C, and the line number (hex) at 0008/9.

CCA4 Evaluate an expression whose beginning address is in 00C9/CA. We use this sub to convert from ASCII to binary, with the result appearing in the floating accumulator 00B0t.

DB1B Convert fixed number in 00B1/2 to floating number. Enter with X=90 and carry set.

D6D0 Convert binary value, such as line number, in floating accumulator to two-byte fixed number and place in 0008/9.

DC9F Convert floating number at 00B0t to ASCII and place in a string starting at 0101, preceded by a space or minus sign at 0100 and terminated by 00.

C38B BASIC warm start. Prints READY.

CA27 Print message. Enter with ADH in Y, ADL in A. Message is ASCII string enough with 00.

DC9F Print the decimal integer whose hex value is in microprocessor registers A and X, for example, a line number.

TABLE 1 - BASIC ROUTINES USED

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK FOR GOTO(ETC</td>
<td>Successful renumbering.</td>
</tr>
<tr>
<td>120</td>
<td>Line 120 is too long to renumber. Break into two or more lines, and renumber again.</td>
</tr>
<tr>
<td>? TOO LONG ERROR</td>
<td></td>
</tr>
<tr>
<td>? OUT OF MEMORY ERROR</td>
<td>Program too long to renumber.</td>
</tr>
<tr>
<td>? SYNTAX ERROR</td>
<td>Attempt to RUN program with GOTO(remaining in program, or attempt to renumber with one of these in program text.</td>
</tr>
<tr>
<td>GOTO(</td>
<td>The opening parenthesis in the text represents attempt to reference a non-existent line number.</td>
</tr>
<tr>
<td>GOSUB(</td>
<td></td>
</tr>
<tr>
<td>ON X GOTO(</td>
<td></td>
</tr>
<tr>
<td>IF A = B THEN(</td>
<td></td>
</tr>
</tbody>
</table>

Note: Lines of the following form are likely to cause a TOO LONG error:

100 ON X GOSUB 1,2,3,4,5,6,7,8,9,10,11,12

TABLE 2 - MESSAGES

MICRO 11:38 APRIL 1979
EXTERNAL ROUTINES

INSERT . $1F00 INSERT A LINE INTO TEXT
MESSG . $1FCA DONE MESSAGE

TEMPORARIES

BUFF . $0008 LINE BUFFER LOCATION
POINT . $0019 TEMP LINE BUFF POINTER
POINTX . $001A TEMP POINTER
LINCNT . $005C NO. CHAR. IN LINE
PTRS0 . $007A ORIGINAL POINTERS
PTRS . $006A WORKING POINTERS
FLAG . $0069 FLAG THE GOTOS
BUFPTR . $006E LINE BUFF POINTER PAGE ZERO
COUNT . $006F COUNTER
STARTC . $00DB CUSTOM STARTING LINE NO.
INTC . $00DD CUSTOM INTERVAL
CUSTOM . $00DE FLAG CUSTOM JOB

BASIC PARAMETERS

FACC . $00B0 BASIC FLOATING ACCUM
BASICP . $00C9 BASIC POINTER
BERROR . $C359 BASIC ERROR ROUTINE
WARM . $C38B BASIC WARM START
PRINT . $CA27 BASIC PRINT ROUTINE
EVAL . $CCA4 EXPRESSION EVALUATOR
FIX . $D6D0 CONVERT TO FIXED DP
FLOAT . $DB1B CONVERT FIXED NMBR TO FLOAT
PNUMBR . $DC9F BASIC PRINT NUMBER
ASCII . $DCAF CONVERT NMBR TO ASCII AT $0100

MAINLINE

1D00 A5 7D START LDA PTRSO &03 GET END TEXT ADH
1D02 C9 1B CMPIM $1B ENOUGH ROOM TO EXPAND?
1D04 90 05 BCC SPACE
1D06 A2 52 BOMB LDXIM $52 OUT OF MEMORY
1D08 4C FC 1E JMP ERROR
1D0B 20 BD 1E SPACE JSR COPY MAKE CC TEXT POINTERS
1D0E 20 3F 1E NEXT JSR DNTST ARE WE DONE THIS SECTION?
1D11 F0 2B BEQ RENUM
1D13 A2 08 LDXIM $08 LINE BUFFER START
1D15 A0 02 LDYIM $02 POINT TO LINE NMBR IN TEXT
1D17 B1 6A GETBYT LDAIY PTRS GET BYTE FROM TEXT
1D19 95 00 STAZX $00 STORE IN LINE BUFFER
1D1B C0 04 CPYIM $04 ZERO HERE NOT TERMINATOR
1D1D 90 04 BCC SKIPA
1D1F C9 00 CMPIM $00
1D21 F0 04 BEQ TERM GOT THE TERMINATOR
1D23 C8 SKIPA INY
1D24 E8 INX
1D25 D0 F0 BNE GETBYT FORCED BRANCH
1D27 20 47 1E TERM JSR EDIT EDIT ONE LINE
1D2A A5 69 LDAZ FLAG
1D2C D0 0A BNE SKIPB SKIP IF NO GOS FLAGGED
1D2E 38 SEC
1D2F A5 6E LDA BUFPTR
1D31 E9 05 SBCIM $05 CORRECT BYTE COUNT
1D33 85 5C STA LINCNT NEED CHAR COUNT
1D35 4C 00 IF JMP INSERT BUT RETURN TO NEXT LINE
1D38 20 C7 1E SKIPB JSR UPDATE POINT TO NEXT LINE
1D3B 4C 0E 1D JMP NEXT
1D3E 20 BD 1E RENUM JSR COPY THE POINTERS
1D41 20 3F 1E NEXTR JSR DNTST ARE WE DONE THIS PORTION?
1D44 D0 03 BNE NOTDON
1D46 4C 16 1E JMP RESEQ
1D49 20 AE 1F NOTDON JSR STRTLN GET STARTING LINE NMBR
1D4C A0 03 SCAN LDYIM $03 POINT TO TEXT-1
1D4E C8 SCANA INY
1D4F B1 6A SCAX LDAIY PTRS GET A BYTE
1D51 D0 06 BNE GOSTEST BRANCH IF NOT TERMINATOR
1D53 20 C7 1E JSR UPDATE GO TO NEXT LINE
1D56 4C 41 1D JMP NEXTR
1D59 C9 89 GOSTEST CMPIM $89 GOT A GOTO?
1D5B F0 15 BEQ GOTO
1D5D C9 8D CMPIM $8D GOT A GOSUB?
1D5F F0 11 BEQ GOTO
1D61 C9 A7 CMPIM $A7 GOT A THEN?
1D63 D0 E9 BNE SCANA
1D65 C8 THEN INY POINT TO NEXT
1D66 B1 6A LDAIY PTRS
1D68 C9 20 CMPIM $20 IGNORE SPACES
1D6A F0 F9 BEQ THEN
1D6C 20 E5 1E JSR TSTDGT TEST FOR NUMBER
1D6F B0 E8 BCS GOSTEST
1D71 88 DEY
1D72 C8 GOTO INY
1D73 84 19 STY POINT SAVE A MOMENT
1D75 98 TYA
1D76 18 CLC
1D77 65 6A ADC PTRS POINT TO ASCII NMBRS
1D79 85 C9 STA BASICCP
1D7B 20 ED 1F JSR PATCH BUG FIX
1D7E EA NOP
1D7F 20 A4 CC JSR EVAL CALL BASIC EVALUATOR
1D82 20 D0 D6 JSR FIX AND BASIC FIX ROUTINE
SEARCH LDA PTRSO SETUP SEARCH POINTERS
STA POINTX
LDA PTRSO &01
STA POINTX &01
SRCHLP LDYIM $00
LDAIY POINTX GET NEXT BYTE
ORAIPX TEST FOR TWO ZERO BYTES
BNE NOTEND ZEROS MARK EOT
LDAIM $20 GET A SPACE
STA $0100 ASCII WORKSPACE
LDAIM $28 GET OPEN PAREN
STA $0101
DEY
STY $0102 TERMINATE WITH ZERO
NEQ MVASC FORCED BRANCH
LDAIY POINTX GET LINE NO. LOW
CMP BUFF MATCH?
BNE NOMAT
LDAIY POINTX GET LINE NO. HIGH
CMP BUFF &01
BNE NOMAT
LDXIY BUFF &08 GET CURRENT LINE NMBR
STX FAC &02
LDAIY POINTfolios &09 SECOND BYTE
STA FAC &01
LDXIM $90 SETUP FOR FLOAT
SEC
JSR FLOAT
JSR ASCII TO $0101 PLUS
MVASC LDXIM $FB MINUS 5
LDY POINT
LDAAX $0006
BEQ BLANKS TERMINATOR ZERO
STAIXY PTRS
INY
INX
BNE LOOPA
BEQ COMMA
LDAIM $20 GET SPACE
STAIXY PTRS STORE IT
INY
INX
BNE BLANKS
DEY
BNE COMMA
COMMX INY
COMMA LDAIY PTRS GET NEXT BYTE
JSR TSTDGT TEST FOR NUMBER
BCS NOTNUM
LDAIM $20 SPACE
STAIXY PTRS STORE IT
BNE COMMA FORCED
CMPIM $20 SPACE?
MICRO 11:42 APRIL 1979

1DF2 F0 EE BEQ COMM
1DF4 C9 2C CMPIM $2C COMMA?
1DF6 08 PHP DEFER TEST
1DF7 20 AE 1F JSR STRTLN GET STARTING LINE NMBR
1DFA 28 PLP NOW TEST
1DFB D0 03 BNE JSCANX NOT COMMA
1DFD 4C 72 1D JSCANX JMP SCANX
1E00 4C 4F 1D JSCANX JMP SCANX
1E03 20 EE 1E NOMAT JSR INCLIN INCR NEW LINE NMBR
1E06 A0 00 LDYIM $00
1E08 B1 1A LDAIY POINTX GET NEXT LINE ADDRESS
1E0A 48 PHA
1E0B C8 INY
1E0C B1 1A LDAIY POINTX
1E0E 85 1B STA POINTX &01
1E10 68 PLA
1E11 85 1A STA POINTX
1E13 4C 8D 1D JMP SRCXLP BACK TO SEARCH AGAIN

1E16 20 AE 1F RESEQ JSR STRTLN SETUP STARTING LINE
1E19 20 BD 1E JSR COPY COPY THE POINTERS
1E1C 20 3F 1E LOOPR JSR DNTST DONE?
1E1F F0 13 BEQ WINDUP
1E21 A0 02 LDYIM $02 POINT TO LINE NMBR
1E23 A5 10 LDAIY BUFF &05 GET NEW ONE
1E25 91 6A STA POINTXR STORE IT
1E27 C8 INY
1E28 A5 11 LDAIY BUFF &09
1E2A 91 6A STA POINTXR
1E2C 20 C7 1E JSR UPDATE ADVANCE TO NEXT LINE
1E2F 20 EE 1E JSR INCLIN INCREMENT LINE NMBR
1E32 90 E8 BCC LOOPR FORCED
1E34 A0 1F WINDUP LDYIM MESSG /100
1E36 A9 CA LDAIY MESSG
1E38 20 27 CA JSR PRINT END MESSAGE
1E3B 58 CLI ALLOW KEYPRESSES
1E3C 4C 8B C3 JMP WARM BACK TO BASIC

1E3F A0 00 DNTST LDYIM $00 GET NEXT BYTE
1E41 B1 6A LDAIY POINTXR ADVANCE TO NEXT
1E43 C8 INY OR WITH LAST TO FIND 0000
1E44 11 6A ORAIY POINTXR
1E46 60 RTS

1E47 A2 09 EDIT LDXIM BUFF &01
1E49 86 6E STX BUFPTR
1E4B 86 69 STX FLAG SET FLAG
1E4D E6 6E EDITX INC BUFPTR
1E4F A6 6E LDX BUFPTR
1E51 B5 00 LDAZX $00
1E53 F0 71 BEQ RTS
1E55 C9 89 EDITY CMPIM $89 GOTO?
1E57 F0 19 BEQ SPACES
1E59 C9 8D CMPIM $8D GOSUB?
1E5B F0 15 BEQ SPACES
1E5D C9 A7 CMPIM $A7 THEN?
1E5F D0 EC BNE EDITX BACK FOR MORE
1E61 E6 6E THENN INC BUFPTR
1E63 A6 6E LDX BUFPTR
1E65 B5 00 LDAZX $00 BYTE AFTER THEN
1E67 C9 20 CMPIM $20 IGNORE SPACES
1E69 F0 F6 BEQ THENN
1E6B 20 E5 1E JSR TSTDGT IS IT NUMBER?
1E6E B0 E5 BCS EDITY IF NOT, GO BACK
1E70 C6 6E DEC BUFPTR
1E72 A2 09 SPACES LDXIM BUFF &01 TEXT-1
1E74 E8 SPACEX INX
1E75 B5 00 LDAZX $00 LOOK FOR TERMINATOR
1E77 D0 FB BNE SPACEX
1E79 E0 54 CPXIM $54 LINE TOO LONG?
1E7B 90 0C BCC OKAY
1E7D A5 09 LDA BUFF &01
1E7F A6 08 LDX BUFF GET BAD LINE NMBR
1E81 20 9F DC JSR PNUMBR PRINT IT
1E84 A2 BB LDXIM $BB TOO LONG MESSG
1E86 4C FC 1E JMP ERROR
1E89 A2 06 OKAY LDXIM $06 DIGITS PLUS ONE
1E8B 86 6F STX COUNT
1E8D E6 6E LOOP INC BUFPTR
1E8F C6 6F DEC COUNT
1E91 F0 12 BEQ COMMAS
1E93 A6 6E LDX BUFPTR
1E95 B5 00 LDAZX $00
1E97 C9 20 CMPIM $20 TEST FOR SPACES
1E99 F0 F2 BEQ LOOP
1E9B 20 E5 1E JSR TSTDGT TEST FOR NUMBER
1E9E 90 ED BCC LOOP
1EA0 20 D5 1E JSR UPONE MAKE ROOM FOR ONE DIGIT
1EA3 D0 E8 BNE LOOP FORCED BRANCH
1EA5 A0 00 COMMAS LDYIM $00
1EA7 84 69 STY FLAG WE WERE HERE
1EA9 A6 6E FINDT LDX BUFPTR
1EAB B5 00 LDAZX $00 FIND TERMINATOR
1EAD F0 17 BEQ RTS
1EAF C9 20 CMPIM $20 SPACE?
1EB1 D0 04 BNE TEST
1EB3 E6 6E INC BUFPTR
1EB5 D0 F2 BNE FINDT FORCED
1EB7 C9 2C TEST CMPIM $2C COMMA?
1EB9 F0 B7 BEQ SPACES
1EBA D0 90 BNE EDITX

1EBD A2 04 COPY LDXIM $04 COPY 4 BYTES
1EBF B5 79 LP LDAZX $79 COPY POINTERS
1EC1 95 69 STAZX $69
1EC3 CA DEX
1EC4 D0 F9 BNE LP
1EC6 60 RTS RTS
UPDATE LDYIM $00
GET LINK ADL
LDAIY PTRS
PHA
HOLD ON STACK
INY
LDAIY PTRS
GET LINK ADH
STA PTRS
$01 STORE LINK ADH
PLA
STA PTRS
STORE LINK ADL

UPONE LDPIXIM BFF
$51 END BUFFER
DEX
GET A BYTE
LDAZX $00
MOVE UP ONE
CPX BUFPTR
BNE LOOPU
LDAIM $20
INSERT SPACE

TSTDGT CMPIM '0
BCC SET
CMPIM ':
RTS
WITH CARRY CLEAR

INCLIN CLC
LDA BUFF $08
ADC BUFF $0A
STA BUFF $08
LDA BUFF $09
ADCM $00
ADD INTERVAL
STA BUFF $09
TO CURRENT LINE
RTS

ERROR CLI
ALLOW KEYPRESS
JMP BERROR BASIC ERROR PROCESSOR

ORG $1FAE

STRTLH LDAIM $64
DEFAULT 100
STA BUFF $08
LDAIM $00
HIGH ORDER
STA BUFF $09
LDXIM $0A
INTERVAL 10
LDA CUSTOM TEST FOR CUSTOM
FBA 10 0A BPL SKIPL
FBC A6 DD LDX INTC CUSTOM
FBE A5 DB LDA STARTC CUSTOM START
FC0 85 10 STA BUFF &08
FC2 A5 DC LDA STARTC &01
FC4 85 11 STA BUFF &09
FC6 86 12 SKIPL STX BUFF 10A
FC8 60 RTS
FC9 EA NOP

FINAL MESSAGE $1FCA THROUGH $1FEC
CHECK FOR GOTO ETC*

1FED PATCH ORG $1FED
1FED A5 6B LDA PTRS &01
1FF 69 00 ADCIM $00
1FF1 85 10 STA BASICP &01
1FF3 60 RTS
1FF4 EA NOP
1FF5 18 ENTRY CLC CLEAR FOR STANDARD
1FF6 90 01 BCC ALL
1FF8 38 ENTRYA SEC SET FOR CUSTOM
1FF9 78 ALL SEI DISABLE KEYS
1FFFA 66 DE RORZ CUSTOM FLAG IN BIT 7
1FFC 4C 00 1D JMP START

CLASSIFIED ADS

ZIPAPE loads 8K BASIC in 15 seconds! Slower than a speeding disc? Sure, but it only costs $22.50 plus $1.00 S&H. $3.00 extra for software on KIM cassette. Described in MICRO #6. SASE for info. Lew Edwards, 1451 Hamilton Ave., Trenton, NJ 08629.

ADVERTISE in MICRO for only $10.00 !!! A classified ad such as the one above, may be run in this new Classified Ad section for $10.00. Ad may not exceed six lines, and only one ad per person, company, etc. Must relate to 6502 type stuff, and ad must be prepaid. You will reach over 6000 readers!!!

The TARGET for users of Rockwell's AIM 65. Find out how to use the printer, keyboard and display. Reviews of upcoming Assembler and BASIC in ROMs. Six bimonthly issues for $5.00 US and Canada ($12.00 elsewhere). Contact: Don Clem, RR#2, Spencerville, OH 45887
DUPLICATE ORG $1F00

DUPLICATE OF BASIC INSERT ROUTINE

EXCEPT FOR EXIT JUMP

```
1F00  20  22  C5  JSR  $C522  1F05  A5  7C  LDAZ  $7C
1F03  90  44  BCC  INSC  1F07  B1  AE  STAZ  $7A
1F05  A0  01  LDAIY  $AE  1F09  85  72  STAZ  $72
1F07  B1  AE  STAIZ  $AE  1F0B  A5  7C  LDAZ  $7C
1F0B  A5  7C  STAIZ  $71  1F0D  85  71  STAZ  $71
1F0D  85  71  LDAZ  $AF  1F0F  A5  AF  STAZ  $74
1F0F  A5  AF  STAIZ  $74  1F11  85  74  LDAZ  $AE
1F13  A5  AE  INY  1F15  C6  SBCIY  $AE
1F16  F1  AE  CLC  1F18  18  ADCZ  $7C
1F19  65  7C  STAIZ  $7C  1F1B  85  7C  LDAZ  $73
1F1B  85  7C  STAIZ  $73  1F1D  85  73  LDAZ  $7D
1F1D  85  73  STAIZ  $7D  1F1F  A5  7D  LDAZ  $7D
1F1F  A5  7D  STAIZ  $7D  1F21  69  FF  SBCZ  $AF
1F23  85  7D  BCS  INSA  1F25  E5  AF  STAZ  $7D
1F25  E5  AF  SBCZ  $AF  1F27  AA  ADCZ  $7C
1F27  AA  TAX  1F28  38  SEC
1F29  A5  AE  LDAZ  $AE  1F2B  E5  7C  SBCZ  $7C
1F2B  E5  7C  TAY  1F2D  A5  7C  INSA
1F2D  A5  7C  INSA  1F2F  B0  03  INX
1F30  E8  INX  1F32  C6  74  DECZ  $74
1F33  CA  INSA  1F34  65  71  CLC
1F34  65  71  INSA  1F36  90  03  LDAZ  $AE
1F36  90  03  INSA  1F38  C6  72  LDAZ  $AE
1F38  C6  72  INSA  1F3A  18  INY
1F3A  18  BCS  INSA  1F3B  B1  71  INSB
1F3B  B1  71  INSB  1F3D  91  73  LDAIY  $71
1F3D  91  73  INSB  1F3F  C8  LDAIY  $71
1F3F  C8  INSB  1F40  D0  F9  BNE  INSB
1F40  D0  F9  BNE  INSB  1F42  E6  72  BNE  INSB
1F42  E6  72  BNE  INSB  1F44  E6  74  BNE  INSB
1F44  E6  74  BNE  INSB  1F46  CA  BNE  INSB
1F46  CA  BNE  INSB  1F47  D0  F2  BNE  INSB
1F47  D0  F2  BNE  INSB  1F49  A9  0A  BNE  INSB
1F49  A9  0A  BNE  INSB  1F4B  F0  17  BNE  INSB
1F4B  F0  17  BNE  INSB  1F4D  A5  86  BNE  INSB
1F4D  A5  86  BNE  INSB  1F4F  A4  87  BNE  INSB
1F4F  A4  87  BNE  INSB  1F51  85  82  BNE  INSB
1F51  85  82  BNE  INSB  1F53  84  83  BNE  INSB
1F53  84  83
```
LOCATION

HEX DECIMAL VALUE TO BE POKE'D

00DB 219 Low order starting line number (weight 1)
00DC 220 High order starting line number (weight 256)
00DD 221 Increment desired (1-255)

Example: POKE 219, 232
 POKE 220, 3
 POKE 221, 50
This will give a starting line number of 3 x 256 + 232 = 1000, and
following lines will be incremented by 50.

LISTING 2 - NON-STANDARD LINE RENUMBER

STATEMENT TOKEN STATEMENT TOKEN
END 80 FN
FOR 81 SPC(
NEXT 82 A6
THEN 83 A7
DATA 84 NOT
INPUT# 85 STEP
INPUT 86 +
DIM 87 -
READ 88 *
LET 89 /
GOTO 90 ↑
RUN 91 AND
IF 92 OR
RESTORE 93 >
GOSUB 94 =
RETURN 95 <
REM 96 SGN
STOP 97 INT
ON 98 ABS
WAIT 99 USR
LOAD A0 FRE
SAVE A1 POS
VERIFY A2 SQR
DEF A3 RND
POKE A4 LOG
PRINT# A5 EXP
PRINT A6 COS
CONT A7 SIN
LIST A8 TAN
CLR A9 PEEK
CMD BA LEN
SYS BB STR$
OPEN BC VAL
CLOSE BD ASC
GET BE CHR$
NEW BF LEFT$
TAB(BG RIGHT$
TO BH MID$

TABLE 3

TOKENS (shorthand used in BASIC text)

ENTERING THE PROGRAM

The hard way to load the program into your PET is to convert my
hex listing into decimal and POKE each byte into memory. This is,
of course, a challenge to your accuracy and diligence, although it
may take only slightly longer than renumbering by hand. It is only
a little easier to write a BASIC program which will accept the hex
data and convert to decimal, with the hex incorporated in DATA
statements and obtained by the READ statement. With this
alternate, the program can be recorded for future use.

To make loading painless (except for the wallet), I have arranged
to make tapes available through NAIL*, Drawer F, Mobile,
Alabama 36601. These tapes load the machine-language program
directly into high memory. Ask for "SYS8181" and send $18.18. By the
way, they also have a dandy PET monitor called SYS7171 for
$29.71, which has machine language capabilities, the ability to
core-reside in RAM with BASIC programs, but also has the very
helpful feature of being able to APPEND one BASIC program to
another, just like the big boys do, with interleaving of lines. Like
SYS8181, it uses the BASIC line-inserting routine to do the merging,
just as though you typed all those new lines on your keyboard. I
used a version of this monitor to develop SYS8181. If there is
sufficient interest out there, I may develop a ROM version of
SYS8181, but you will have to be a hardware buff to wire it into
your PET.

Since PET BASIC was written by the same company who write
APPLESOFT and is similar, some APPLE owners may wish to obtain
a disassembled, documented listing of this renumbering program
from me for $5.00.

*National Artificial Intelligence Laboratory

P.S. SOFTWARE HOUSE

FOR ONLY $24.95 YOU GET
24" X 30" schematic of the CPU board, plus oversized schematics of the Video
Monitor and Tape Recorder, plus complete Parts layout - all accurately and
painstakingly drawn to the minutest detail.

PET™ SCHEMATICS
FOR ONLY $19.95 YOU GET
Complete Disassembly listings of all 7 ROMS, plus identified subroutine entry
points. Video Monitor. Keyboard routine. Tape Record and Playback routine. Real
Time Clock, etc. To entice you we are also including our own Machine Language
Monitor program for your PET using the keyboard and video display.
You can have the Monitor program on cassette for only $9.95 extra.

PET™ ROM ROUTINES

PET to PARALLEL INTERFACE with 8A Power supply $74.95
PET to 2nd CASSETTE INTERFACE $49.95

P. S. SOFTWARE HOUSE
P. O. Box 966
Mishawaka, IN 46544
Tel: (219) 255-3408

Send for our free SOFTWARE BROCHURE. Dealer inquiries welcomed.

PET™ EXPANDER PRINTER

PRINTER PRICE with PET INTERFACE $525
• Small size of 4 5/8" x 12 1/2" x 9 3/4" D
• Impact printing - 3 copies
• Prints 80 columns wide
• Print Cylinder - not a matrix
• Easy to maintain yourself - or return to us
• Normal Paper - Coated paper not required
• Full Documentation Included

This is the ideal, low cost, reliable, self maintained
printer with which to complete your PET™ system.

P.S. SOFTWARE HOUSE
P.O. Box 966
Mishawaka, IN 46544
Apple FORTH
Pet FORTH

FORTH is a unique threaded language that is ideally suited for systems and applications programming on a micro-processor system. The user may have the interactive FORTH Compiler/Interpreter system running stand-alone in 4K to 6K bytes of RAM. The system also offers a built-in incremental assembler and text editor. Since the FORTH language is vocabulary based, the user may tailor the system to resemble the needs and structure of any specific application. Programming in FORTH consists of defining new words, which draw upon the existing vocabulary, and which in turn may be used to define even more complex applications. Reverse Polish Notation and LIFO stacks are used in the FORTH system to process arithmetic expressions. Programs written in FORTH are compact and very fast.

APPLE II COMPUTER $34.95
PET 2001 COMPUTER $34.95

Apple PIE

PIE (PROGRAMMA IMPROVED EDITOR) is a two-dimensional cursor-based editor designed specifically for use with memory-mapped and cursor-based CRT’s. It is totally different from the usual line-based editors, which were originally designed for Teletypes. The keys of the system input keyboard are assigned specific PIE Editor function commands. PIE includes the following features: blinking cursor; cursor movement up, down, right, left, home, plus tabs; character insert and delete, string search forwards and backwards; page scrolling; GO TO line number, plus top or bottom of file; line insert and delete anywhere on screen; append and clear to end of line; move and copy buffer.

APPLE II COMPUTER $19.95

All orders include 3% postage and handling.

Apple II is a registered trademark of Apple Computer, Inc. Pet is a registered trademark of Commodore International and TRS-80 is a registered trademark of Radio Shack. California residents add 8% sales tax.

VISA & MASTERCHARGE Accepted.

PROGRAMMA INTERNATIONAL, Inc.
3400 Wilshire Blvd.
Los Angeles, CA 90010
(213) 384-0579
384-1116
384-1117

Dealer Inquiries Invited
GRAPhIcS PAC

Quadruple your PET's graphic resolution. Do not be stuck with the PET's cumbersome 25X40 1000 point display. With the Graphics Pac you can individually control 4000 points on screen. It's great for graphing, plotting, and gaming. The Pac is a set of three programs with full documentation. PLOT places coordinate 0,0 in the screen's upper left hand corner. For more sophisticated applications the Pac includes GRAPH which plots point 0,0, in the center of the screen allowing you to plot equations in all four quadrants. As a bonus a Hi Res Doodle game is included. All this on a high quality cassette for $9.95.

ASSEMBLER 2001

is a full featured assembler for your PET microcomputer that follows the standard 6502 set of machine language mnemonics. Now you can write machine code programs. Store your assembled programs, load them, run them, and even list your programs and various PET subroutines. Unlike other assemblers this is one program! You do not have to go through a three tape process to edit and run a program. Of course to make more space you can trim out the features you do not need. Assembler 2001 allows you to run through the USR of SYS commands. This valuable program is offered at $15.95.

BIKE

An exciting new simulation that puts you in charge of a bicycle manufacturing empire. Juggle inflation, breakdowns, seasonal sales variations, inventory, workers, prices, machines, and ad campaigns to keep your enterprise in the black. Bike is dangerously addictive. Once you start a game you will not want to stop. To allow you to take short rest breaks, Bike lets you store the data from your game on a tape so you can continue where you left off next time you wish to play. Worth a million in fun, we'll offer BIKE at $9.95.

PINBALL

Dynamic usage of the PET's graphics features when combined with the fun of the number 1 arcade game equals an action packed video spectacle for your computer. Bumpers, chutes, flippers, free balls, gates, a jackpot, and a little luck guarantee a great game for all. $9.95.

SUPER DOODLE

Move a cursor in eight directions leaving a trail of any of the 256 characters the PET can produce. New features include an erase key that automatically remembers your last five moves, a return to center key, and clear control. Why waste any more paper, buy Super Doodle for only $9.95.

DRIVING ACE

Non stop excitement with a fast moving, high paced version of your favorite video arcade racing games. Shift up! Shift Down! Watch your gas, and be careful on those hairpin turns. This dynamite tape has the two most common arcade racing games specially adapted to run on your PET computer. Driving Ace simulates an endless road packed with tight turns and gentle, but teasing, twists. Starting with fifty gallons of gas, how far can you go with a minimum of accidents? Grand Prix places you and your car on a crowded racing track. Race the clock and be careful steering around the fast but packed Grand Prix track. $9.95

Dealer Rates On Request
A complete hardware/software debug system for the Rockwell, Synertek, MOS/Technology 6500 microprocessor family.

Features

- Standard in-circuit emulator
- Hardware breakpoints
- Single step mode
- Eight software breakpoints
- Real-time software breakpoints
- RS 232C or current loop terminals
- Symbolic disassembly of user program
- Serial/parallel load capability
- Program trace of instructions and registers

- Prom resident debug monitor
- Software history of instruction addresses
- 2K ram standard with sockets for additional 6K if required
- Scope sync output
- User NMI and IRQ vectors supported
- Write protect
- User program may reside in high memory

SINGLE QUANTITY PRICE = $1450